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I. Introduction

Reuse of software components emerged as an industry goal

subsequent to a NATO conference in 1969 where Doug McIlroy first

introduced the concept.  Over the two decades since, reuse

remained a topic of much discussion and some research; and,

although different views exist on the degree of success enjoyed

by software developers in today’s industry, most students of the

state of software development practice agree that McIlroy’s

original vision has yet to be achieved and that increased reuse

of software components is possible and remains a goal worth

pursuing.

The present paper attempts to advance the cause of software

reuse by investigating two main ideas.  First, how can  advances

in requirements engineering be used to improve software reuse?

This paper proposes that a requirements engineering process, and

supporting techniques and tools, can be used to generate the

domain knowledge that is a necessary condition for successful

reuse.  Further, this paper proposes that prototyping can be

used during requirements engineering to evaluate the reusability

of knowledge and components identified in earlier phases of the

requirements engineering cycle.  A secondary idea investigated

in this paper is the degree to which reusable software can

assist in prototyping during the requirements engineering

process.  For example, can we hope that reusable software
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components will provide a basis for prototyping?  These ideas

are presented more fully in Section III, Requirements

Engineering for Reuse.

Before considering the relationships between requirements

engineering and reuse, some discussion is needed regarding

reuse.  Section II, Reuse: Problems, Practice, and Potential,

presents the necessary material.  First, a context is

established by defining and limiting, for purposes of this

paper, the scope of reuse.  This includes an explanation of the

motivations behind reuse and a brief evaluation of the progress

achieved over twenty years.  Second, problems that deter reuse

are enumerated under four categories: 1) technical, 2)

cognitive, 3) managerial, and 4) economic.  A brief description

of each problem is given.  Third, some specific examples of

reuse practice during the past decade are identified and

described.  The examples are taken from corporations, government

organizations, and the mass, so-called "consumer", market.

Fourth, some research aimed at overcoming problems associated

with software reuse is reported.  Section II then closes with

some conclusions about reuse.  The remainder of the paper

investigates the theses advanced in Section III.

Section IV, Domain Knowledge Acquisition and

Representation, considers how requirements engineering

processes, and associated tools and techniques, for elicitation,

organization, and representation of knowledge can support

software reuse.  Specifically, knowledge acquisition is explored

as a method to elicit reusable concepts from domain experts, and

knowledge representation is examined as a means to organize,

describe, and refine domain knowledge.  Section IV closes with

some conclusions regarding knowledge acquisition and

representation.

Section V, Prototyping and Reuse, explores possible links

between prototyping and software reuse.  The section begins with
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an overview of prototyping approaches (by aim, by technical

approach, and by life-cycle model), and then describes some

specific prototyping systems reported in the literature within

the last four years.  The section closes with a discussion of

potential relationships between prototyping and software reuse.

A concluding section (VI) provides a summary of the ideas

advanced in the paper.  Reuse is key to productivity

improvements in most human endeavors.  Software development is

no exception.  Reuse of software has improved over time, but

greater potential for reuse appears feasible within the next

decade or two.  This paper propounds a view that a requirements

engineering process, and related tools and techniques, can

advance the state of software reuse.  
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  II.  Reuse: Problems, Practice, and Potential

Although software reuse is often considered to denote

cobbling together a program from a set of software pieces or

linking an application with a set of library subroutines, the

reality of reuse defies simple description.  As a working model

of software reuse, Prieto-Diaz defines two levels: 1) ideas and

knowledge and 2) artifacts and components. [PRIE87a]  This is a

convenient dichotomy because whenever a programmer creates

software he is reusing knowledge he already possesses. [CURT89]

 On a larger scale, programming projects reuse a massive amount

of knowledge, including software development process knowledge.

Thus, initiatives such as that of the Software Engineering

Institute to document, refine, and promote improved software

development processes are an example of reuse of ideas and

knowledge to develop software.  Probably the most productive

reuse of knowledge to develop software obtains today from reuse

of trained software development personnel. [MEYE87]  

Other examples of knowledge reuse for software development

abound.  A huge commercial market exists for books describing

data structures and algorithms, and for teaching about the

nature and application of those algorithms and data structures.

[STAN84] Another example of knowledge reuse is adoption of and

adherence to technical standards and conventions. [RICE89] Going

even further toward tangible knowledge, buying commercial

software, including so-called 4GLs, can be viewed as reuse of

knowledge and ideas. [BOEH87] Brooks describes a burgeoning mass

market for software programs that are applicable to specific

tasks, and he proposes to:

equip the computer-naive intellectual
workers ... with personal computers and good
... writing, drawing, file, and spreadsheet
programs and then [to] turn them loose.  The
same strategy, carried out with generalized
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mathematical and statistical packages and
some simple programming capabilities, will
also work for ... laboratory scientists.
[BROO87, p.16-17]

Introduction of commercial software products blurs the line

between knowledge and artifacts.  Since software artifacts and

components embody ideas and knowledge, the reuse levels

introduced by Prieto-Diaz perhaps have more to do with

representation: knowledge and ideas being intangible until they

are represented; once represented in human-readable form, they

become artifacts, and when they reach a machine-executable form

they can be considered software components.

The key point of this discussion is that one needs to reuse

more than code.  (In fact, it is difficult to define reusable

components apart from a context;  and a context can include the

requirements, a specification, a system architecture, another

program or software subsystem, and a test plan and test cases.

[CALD91])  Lenz considers the key reusable component to be a

specification that includes a functional overview, a programmer

interface (syntax and informal semantics), formal semantics, any

constraints or dependencies, a description of the rationale for

and characteristics of the design, and an example usage.

[LENZ87] From a single specification, Lenz envisions many

potential implementations.  This view is reinforced by others

who stress that the design and architecture are more reusable

than code over the long-term. [WIRF90,HORO84,JONE84]  Still, the

end goal is to produce an executable computer program that

satisfies a given set of requirements; thus, reusable software

components, such as subroutine libraries, Ada packages, program

generators, code skeletons and templates, and reconfigurable

software systems, remain a necessary, tangible aspect of reuse.

For purposes of the present paper reuse is circumscribed

within a bounds of machine-processability; thus, reusable

components must be both tangible and computer-processable.  This
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definition requires that problems associated with capturing and

representing knowledge must be addressed.  The definition also

stipulates that knowledge and ideas represented solely in

human-accessible form are outside the circle of reuse drawn

within the present paper.  So, for example, if a human-readable

design is captured and represented, then such design must be

accessible through a computer-searchable index, or such design

must identify one or more implementations that can be

incorporated in, or that embody, a computer program.  This,

then, is software reuse: finding, accessing, evaluating, and

using or adapting one or more software components to satisfy a

given set of requirements.

Successful reuse of software components leads to increased

productivity among software developers, to improved quality in

the delivered products, and to more cost-effective software

maintenance. [CAVA89] Such improvements could prove valuable to

organizations that depend on computer software.  Boehm estimates

that by 1995 a 20% improvement in software productivity will be

worth $90 billion worldwide. [BOEH87]  And there is ample

evidence to suspect that reuse can become a normal part of

software development practice.  For example, a study of business

software systems at Raytheon Missile Systems Division found that

60% of all designs and code were redundant and could be reused.

[LANG84]  Another study of California commercial banking and

insurance applications found that approximately 75% of the

software functions were common to more than one program, and

concluded that less than 15% of the code written for such

applications is unique, novel, or specific; the remaining 85%

appeared to be generic. [JONE84]  Further, when examining the

immense leaps forward in computer graphics made between 1954 and

1984, Standish found reasons to hope for equal progress in the

future in a number of applications. [STAN84]  Matsumoto also
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reported in 1984 that 50% of the lines of code delivered in

products from the Toshiba software factory were reused. [MATS84]

In that same year, Kernighan described the UNIX operating

system as a set of reusable programs that can be composed via a

shell and pipes, coupled with a reusable set of operating system

services that could be accessed by programs in a variety of

source languages through linkable subroutine libraries. [KERN84]

In addition to the UNIX tools, Horowitz and Munson identified a

number of widely used subroutine libraries for mathematical

functions and numerical analysis, and described compiler

generators, simulation languages, and parameterized software

systems as, then current, software reuse successes. [HORO84]  

Also in 1984, spreadsheets were declared software reuse

successes. [JONE84] By 1985, some were claiming that a new

industry was emerging to support the design, development,

distribution, and maintenance of reusable "Software-ICs".

[LEDB85]

By 1987, advocates such as Biggerstaff saw software reuse

as a great promise unfulfilled.  Biggerstaff’s experience was

that well under half of delivered systems could be composed of

reused code. [BIGG87]  Intermetrics, owners of a reusable

software library, reported that 33% of delivered code consisted

of reused Ada packages. [BURT87] Prieto-Diaz found that most

reusable components were small in number of lines of code, were

simple in structure, had excellent documentation, and were

written in the same software language as the new software system

under development. [PRIE87]

Two years later, NASA projects were achieving software

reuse rates of only 32%.  That same year Curtis reported that

software development practitioners, depending on their

operational definition of reuse, had been reusing software for

years, had just started a promising reuse program, or saw a need

to sponsor much more research on reuse. [CURT89]
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Painfully slow progress was made on reusing software

between 1984 and 1989.  In 1984, studies predicted that 60-85%

of business software could be composed from reusable components,

and some enlightened companies were even achieving 50% code

reuse.  Yet, five years later, the best reported software reuse

rates were at about 33%.  By 1991, software reuse practice was

seen to be at a stage of awakening, moving slowly toward a

period of early use. [CALD91]  Why has progress been so slow?

Successful reuse of software requires overcoming a long

list of hard problems.  Meyer discusses software reuse problems

in terms of technical issues, economic incentives, and

programmer reluctance. [MEYE87]  In Meyer’s opinion the main

roadblocks to successful reuse are technical.  Without

evaluating Meyer’s opinion, immediate evidence supporting his

view can be drawn from the following discussion because the list

of technical problems impeding software reuse is double that for

any other category;  however, the relative significance of each

particular problem is difficult to evaluate.  The present paper

classifies reuse problems in four categories:  1) technical, 2)

cognitive, 3) management, and 4) economic.  The description

begins with the technical problems.

The reuse population problem comprises the current dearth

of reusable components.  Obtaining qualified candidates for

reuse is difficult, and adapting submitted code to a reusable

form is expensive. [CAVA89]  Software is not often designed for

reuse, and even when software is so designed, writing reusable

software is difficult. [RAMA86, MEYE87]  Code can be too

specialized and often includes too many representational

details. [STAN84]  For example, Biggerstaff points out that:

[m]odules become less ... reusable the more
specific they become because it is more ...
difficult to find an exact match of detailed
specifics.  Modules subtlely encode ...
specific information about a variety of
things:  operating system, run-time library,
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hardware equipment, ... data packaging,
interface packaging, and so forth. [BIGG87,
p. 43]

And yet, separating a reusable software component from a

specific context is difficult. [CALD91]

Another reason for the paucity of reusable components is a

lack of producers.  Most software development is conducted on a

project basis; but projects will never be an appropriate place

to create reusable software.  Projects are hindered by a

deadline focus, lack wide domain knowledge, and lack a reuse

perspective. [CALD91]  Production of reusable components is also

inhibited by lack of accepted frameworks or system architectures

into which components can be integrated. [WIRF90]  Another

factor working against the supply for reusable software is lack

of demand; "too few software developers value or appreciate a

quality library...." [GRIS91, p. 264]

A large supply of reusable components would not be a

panacea, additional issues would elevate in significance.  One

such issue is the classification problem.  By what attributes

should reusable components be described and classified to enable

effective search and retrieval by potential users?  Several

approaches have been proposed [BUTR87, PRIE87, CAVA89]  None of

these schemes appears particularly effective, and none seem

necessarily superior to the others.  Defining an approach that

enables discrimination between very similar components is a

particularly difficult classification problem. [PRIE87]

Assuming that software components can be adequately

classified, the location and retrieval problem must be

addressed.  How can potentially appropriate reusable candidates

be located and retrieved?  The search space could be immense.

Some means of factoring out specificity is required, so that the

search space can be narrowed. [BIGG87]  If specificity is

factored out, then a means of mapping between a specification

and appropriate implementations is needed. [BIGG87]  Helping a
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programmer retrieve a group of possible reuse candidates is

achievable, but allowing a programmer to find the closest match

against his stated requirements is much harder. [RAMA86]  No

matter what approaches are used, reuse libraries must be

organized for quick search and access. [CURT89]

With a candidate set of reusable components in hand, the

evaluation problem must be solved.  There are two facets to this

problem: how close to the requirements does each candidate match

and how easily reusable is each candidate?  There are some

proposals for solving these problems [BURT87, PRIE87].  Reuser

experience is significant because programmers will need to

determine if reuse will require more work in a given situation

than would a new implementation. [RAMA86]  None of the existing

proposals appears particularly effective, although one of them

[PRIE87] attempts to vary the evaluation depending on a reuse

experience profile for the programmers conducting the

evaluation.

The significance of reuse experience among programmers was

investigated in a study by Woodfield. [WOOD87]  In the study, 51

developers (25 from industry and 26 from a university) were

given 21 software components and asked to determine if each

component could be reused to satisfy a particular specification.

The study resulted in four findings.  First, programmers

untrained in reuse could not evaluate the ability of a reuse

candidate to satisfy implementation criteria.  Second,

programmers untrained in reuse are influenced by some issues

that are unimportant and are not influenced by some issues that

are important.  Third, no groups of programmers could be

identified as performing significantly better or worse in

judging reusability.  Finally, if a programmer judged that the

work needed to reuse code was less than 70% of the effort

required to build the code from scratch, then the component was

chosen for reuse.
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Having successfully selected a reusable component,

programmers typically must overcome the adaptation problem.  A

programmer must understand a component in order to modify it.

[CURT89]  Depending on the match between the programmer’s

specification and the reuse component, the software might

require conversion for a different operating system or

programming language or hardware environment.  The interfaces

available to the component might not match the interfaces

expected. [NOVA92]

When required to adapt reusable code, the tendency among

programmers is to copy and modify. [CAVA89]  To avoid copying, a

number of problems must be solved.  For example, who owns and is

responsible for the reusable component?  How are the components

maintained and synchronized with the release of products that

incorporate the components? [LENZ87]  How can reusable code be

kept available in a form that works on multiple computing

platforms? [CAVA89]

Selby investigated reuse at the National Aeronautics and

Space Administration (NASA), examining 25 software systems

ranging in size from 3,000 to 112,000 lines of code, and found

adaptation to be an important factor affecting reuse. [SELB89]  

He compared newly developed modules to two classes of reused

modules: extensively revised and slightly revised.  He found

that modules reused without revision had:  1) fewer calls to

other modules per line of code, 2) simpler interfaces, 3) less

interaction with human users, and 4) higher ratios of comments

to lines of code.  Completely reused modules were generally

smaller, required less development effort, required fewer

versions during development, and had more assignment statements.

Selby’s investigation introduces the granularity problem

identified by Biggerstaff. [BIGG87]  Smaller, simpler components

tend to be reused more because the population is large and

evaluation and adaptation are easy, though finding smaller
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components can be hard and the payoff is usually low.  Larger

components tend to be reused less often because the population

is low and evaluation and adaptation are hard, though finding

such components is easy and the payoff can be high.  In general,

small reusable components are less desirable. [LENZ87, WIRF90]

Granularity of reusable components influences the

composition problem.  To be successful, reuse schemes must

provide "...robust mechanisms to insure reliable and meaningful

parts composition."  [RICE89, p. 125]  Two different approaches

exist to solve the composition problem.  One approach relies on

standards for communication and data interchange. [JONE84]  In

this model, reusable components, which are assumed to be fairly

large, are connected together via communication channels, and

data is exchanged between the components in a standard format.

The second approach relies on a standard architecture into which

components can be linked using a range of different mechanisms.

[WIRF90, JONE84]  The UNIX model for composition is a hybrid of

these approaches. [KERN84]

Two other technical issues merit discussion: the

documentation and representation problem and the requirements

specification problem.  The documentation requirements for

reusable components are at least as rigorous as for any other

software, probably more rigorous.  The documentation must

facilitate the understanding required to aid in the evaluation

and adaptation of components; for large reusable components this

is critically important and also very difficult.  Maintenance is

70%-90% of the software life-cycle, and understanding is 50%-90%

of the maintenance problem. [STAN84]  Documentation must include

a specification, a design, a design rationale, constraints on

reusing the component, and test cases. [CALD91]  How should this

information be represented?

The final technical issue addressed here is the

requirements specification problem.  If the reader is not yet
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humbled by the scope and depth of technical barriers facing

software reuse and thinks that these will in due course be

overcome, then consider the trigger for software reuse: user

requirements statements.  Users may express their requirements

in a form that can disguise cues that might otherwise trigger

recognition of appropriate reuse. [CURT89]  Meyer was right, the

technical barriers to reuse are indeed high; but there exist

other impediments as well.

The programmer acceptance problem is well-known. [MEYE87,

CURT89, SAGE90]  Experienced programmers tend to view their work

as creative, and they interpret reuse as routine application of

old technology.  Programmers also possess a certain pride of

authorship and believe that they can do the job better than

others.  Programmers tend to distrust software developed by

those they do not know.  Also, the work required to understand

the code of others, is not normally viewed by programmers as

interesting.  Programmers tend to believe that they will not get

credit for work that incorporates large amounts of reusable

code.

The novice programmer problem is a special cognitive issue.

[CURT89]  The short-term memory of humans can handle about

seven, plus or minus two, concepts at a time.  To overcome this

problem, programmers chunk complex concepts together under

labels, and then the mind can process seven labels.  The labels

refer to information stored in hierarchical, semantic networks

in a programmer’s long-term memory.  Expert programmers are

better at encoding new information and at mapping, comparing,

and analyzing the information against the broad base of

knowledge that they already possess.  This means that novice

programmers, who can benefit the most from reusable software,

are not adept at identifying, analyzing, and evaluating

candidates for reuse.

13



Another cognitive difficulty is the force-fit problem.

[CURT89]  Programmers will often try to force the application

requirements to fit a structure or pattern for which they know a

solution, even if the solution fails to satisfy some of the

original specifications.  A related issue is the generalization

problem. [MEYE87, CURT89]  Abstracting general concepts out of

specific implementations to form a reusable concept is a

difficult mental exercise.  Such generalization is often

required because solutions that a programmer knows for one

application domain might not transfer easily to another.

Of course, managers also play a role in software reuse, and

unfortunately, reuse often suffers from a management commitment

problem.  Building a library of reusable components takes time

and costs money.  Managers can seldom identify the potential for

a good return on the required investment.  Even when managers

are inclined to establish a program, and to evaluate the results

as time goes by, the measurement problem interferes. [CAVA89]  

What are the measures that will demonstrate increased

productivity and improved quality?  If measures can be defined,

how will the required data be obtained?  How can return on

investment by accurately determined?

The return-on-investment problem is one of the economic

issues impeding software reuse.  If a company delivers software

that is too general and too reusable, then management may fear

that they will not get the usual follow-on business of

maintenance and enhancements. [MEYE87]  Individual programmers

or small companies that could specialize in reusable components

of a limited scope and size have no sure means of collecting for

their efforts because their code can be easily copied and

distributed across communications links. [COX92]  This could be

called the intellectual property protection problem.  In

addition, purveyors of small, reusable components face a
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marketing problem.  How can you sell a reusable stack, for

example? [COX92]

Despite this host of difficult problems, software reuse is

practiced to varying degrees in both industry and government.

In the following paragraphs some instances of reuse practice

between 1984 and 1992 are identified and described, beginning

with reuse in the business systems domain at Raytheon Missile

Systems Division, circa 1984.

Langergan and Grasso [LANG84] report on a reuse program at

Raytheon that resulted in average code reuse rates of 60%.  The

approach to reuse taken at Raytheon began with analysis of

existing application code.  Langergan and Grasso identified six

major functions in business applications, and, after analyzing

those functions, discerned seven program logic structures.  From

this analysis they defined two types of reusable components:

functional modules and program logic structures.  A preliminary

analysis of the COBOL programs at Raytheon uncovered 3200

functional modules that support fifty applications.  Since the

initial analysis revealed a great potential for reuse, the

investigators were given support to analyze over 5000 programs.

The programs were analyzed by programming supervisors and were

classified against a set of criteria provided by Langergan and

Grasso.  This initial classification identified 1,089 edit

programs, 1,099 update programs, 2,433 report programs, 247

extract programs, 245 conversion programs, and 161 data fix

programs, for a total of 5,274.  After generalization by

Langergan and Grasso, the programs were reclassified as 1,581

edits, 1,260 updates, and 2,433 reports.  For each module the

average lines of code, by type, was: 1) edit, 626, 2) update

798, and 3) report, 507.

Out of the 5,274 programs initially analyzed, programming

supervisors selected 50 for detailed study.  The study revealed

that 40-60% of the code was redundant and could be standardized.
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The investigators then formed three prototype COBOL program

logic structures and began to practice code reuse.  Initial

results found reuse rates between 15% and 85%.  When the paper

was published in 1984, over 5500 logic structures had been

developed, and average  reuse rates were 60%.  These appear to

be the best software reuse results ever reported in the

literature.

At about the same time that Langergan and Grasso were

investigating and implementing reuse in the United States,

Matsumoto was also pursuing reuse at a Toshiba software factory

in Japan. [MATS84]  Matsumoto, approaching reuse in a more

theoretical fashion than Langergan and Grasso, defined three

levels of abstraction: specification, design, and code.  Reuse

at Toshiba was facilitated by providing traceability between

these levels.  A method of presentation, called Forms, was

defined for each level.  Form(1,Q*) denotes the specification,

and includes the objects, relationships, control algorithms,

input/output transformations, constraints, and givens associated

with the problem.  A Form(1,Q*) description remains under strict

change control.  A Form(3,Q*) presentation is a generic

implementation of a solution.  Form(1,Q*) descriptions are

stored in a searchable library which provides links to

appropriate Form(3,Q*) code segments in a computer-aided

software engineering (CASE) system.  When developing new

software, designers are required to complete a representation

called Form(1,P) which is used to search the repository for a

match.  Should an appropriate, matching Form(1,Q*) be located,

the designer is required to follow the links to the associated

Form(3,Q*) and then to generate code from the given skeleton.

Using this approach, Toshiba achieved a reuse rate of 50% of the

lines of code in delivered products.

A third approach to software reuse extant in 1984 was the

UNIX operating system. [KERN84]  The UNIX operating system
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advocates a software development style where many small, general

purpose programs are constructed and then linked together in

novel ways through composition operations (shell and pipes).  To

facilitate the construction of the small programs, UNIX includes

a number of software libraries that provide access to operating

system services.  Over the eight years since 1984, the UNIX

model has proven surprisingly durable.  Many of the computers

delivered today to industry and government require support for

the UNIX operating system; in fact, the U.S. Government has

defined a Federal standard, POSIX, based on the UNIX system.

By 1987, IBM apparently decided that reusable software

might have merit, and began to implement reusable building

blocks. [LENZ87]  The aim of such building blocks was to

encapsulate functionality, to present well-defined interfaces,

and to achieve zero-defect quality.  Each building block is

represented by a single, detailed specification that could point

to potentially many implementations. (IBM has a rather large and

varied product line.)  Although IBM started out to build link

libraries this approach was soon abandoned in favor of

macro-based, code templates.  The link library approach had a

number of flaws: 1) procedure call overhead was too great, 2)

parameters were too generic and had to be repeated, and 3)

compilers could provide no support for correctness checking in

the user’s program.  The results reported in 1987 were

surprisingly modest.  Only sixteen abstract data types, four

procedural building blocks, and three functional building blocks

had been created.  Two implementations existed for some of the

specifications.  The component sizes ranged from 100 to 3000

lines of code, with 1000 being the average size.  Two lessons

were reported from this approach:  1) a clear understanding of

the application domain is required to build reusable software

and 2) fewer, larger components are easier to manage than a

large number of small units.
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Another reuse project reported in 1987 was conducted by

Intermetrics. [BURT87]  The Intermetrics reusable software

library (RSL) relied mainly on Ada, although components in other

languages were also accepted.  Each reusable component was

characterized according to 14 attributes, some of which were

automatically validated by a supporting RSL database (RSLDB).

Some of the attributes could only be verified by a human quality

assurance expert.  The attributes were screened carefully

because the resulting information was used by a program called

SCORE to assist users in retrieving components that might match

specific requirements.  Again, the reported results were

somewhat disappointing when compared with the successes reported

in 1984.  Only 33% of delivered code consisted of reused Ada

packages. Several of the delivered products showed poor

performance until performance analyzers were used to profile the

code, following which the code was tailored for the new

application.  Three lessons were reported by Burton: 1)

standards are needed to define reuse attributes and metrics, 2)

automated tools require a thorough understanding of the

application domain in order to effectively evaluate the reuse

potential of particular components, and 3) the value of a

reusable library increases when integrated with supporting

automated tools.

In 1989, Cavaliere reported on a software reuse project

started at the Hartford Insurance Group in 1981. [CAVA89]  The

approach at the Hartford was similar to that of Langergan and

Grasso.  COBOL program skeletons, logic skeletons, and common

functional modules were defined and created, although code

generators were also used -- primarily for terminal screens and

report formats.  The innovations in the Hartford approach were

mainly in areas of management.  For example, a Reusable Code

Review Board was established to accept, review, evaluate, and

refine suggestions for reusable code, to identify and pilot new
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reuse needs, and to conduct demonstrations and handle questions.

One member of the board came from each application programming

division at the Hartford.  Each developer of new software was

asked to submit information regarding the potential reusability

of the new code, and management initiated an incentive program

to give cash awards and recognition for reusable code

submissions.  Further, management invested in training programs

and bulletin boards and established a reuse resource center that

was manned 24 hours a day (programmers work at all hours) to

help solve problems and answer questions.  Cavaliere made the

following recommendations to organizations considering a reuse

program:  1) use 4GLs as much as possible, 2) develop and

maintain an automated index of existing programs and functions,

3) provide full-time resources to start and support the program,

4) provide resources to assess changes in productivity and

quality, and 5) setup a reusability users group.

By 1991, even the Department of Defense had established a

software reuse repository. [DISA91]  The Defense Information

Systems Agency (DISA) provides government users and government

contractors with dialup access to a database of reusable

software components.  The database can be searched with keys,

assigned specific weights by the searcher, that guide access

through an ten-facet classification scheme (component type,

function, object, language, algorithm, data representation, unit

type, certification level, environment, and originator).  The

repository can hold information on anything from functional

specifications to code, and languages range from 2167 (a DOD

specification standard) to COBOL.  Apparently, each component is

self-classified by the submitter, and some components are

controlled by commercial licenses.  The repository also

maintains a set of metrics for each component meant to

characterize reusability, maintainability, reliability, and
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portability.  Information is included describing known uses of

each component, as well as known problems.

While the DOD appears to be a latecomer to software reuse,

even such a successful computer and instrument company as

Hewlett-Packard (HP) only initiated a Corporate Engineering

Software Reuse program in October of 1990. [GRIS91]  The program

appears to have achieved little as of October 1991.  Some HP

divisions have started a multi-divisional domain analysis aimed

at defining common architectures, components, and libraries for

firmware in instruments and for chemical and medical

applications.  One goal is to produce frameworks and major

components that can be reused across several product lines.  A

second goal is to develop a reuse education curriculum.  Reuse

at HP is envisioned to be independent of any specific

programming language,  but object-oriented analysis (OOA) and

design (OOD) will probably be the basis for most of the domain

analyses conducted in support of HP reuse objectives.

Looking beyond HP, a cursory review of trade magazines and

the desks in homes and offices across the country reveals a

large market for reusable software programs that run on

particular computer architectures and under control of some

specific operating systems.  The mass market for reusable

software provides applications such as spreadsheets, graphical

user interfaces, communications programs, wordprocessors,

databases, math programs, computer-aided design, and more.  The

market value of this software indicates an immense reuse

success, a success built on de facto standards for hardware and

operating systems.  Techniques are now reaching the marketplace

to enable these various applications to be composed in ways not

originally intended by the application programmer.  Some

skeptics do not believe that a commercial mass market can

achieve acceptable levels of reuse over the long-term.  For

example, Adele Goldberg believes:
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...reusable, combinable applications,
[t]oday we see this idea being promoted at
the level of operating systems, window
systems, and independent software
architectures (low-level such as Microsoft’s
DLL and Sun’s sharable libraries, and
high-level such as Patriot Partners’
Constellation project and ParcPlace’s object
model and frameworks approach).  A public
market is a very loosely organized
environment...even well-designed components
with minimally constrained interfaces will
have trouble attracting a critical mass of
customers.  On the other hand, within a
single organization, reusable components can
be developed and redesigned with a context
that can span a large fraction of their
intended uses.  In this way accumulation of
reusable code can become an important
business asset, and can be treated as an
investment and a capital good, rather than
simply a cost. [GRIS91, p. 268]

This tension between mass-market, reusable software and

custom-developed, reusable software will continue for at least a

decade.  The buy or build decisions facing managers in large

corporations and government organizations could have unforeseen

effects on ideas about software reuse.  In the meantime,

software reuse, as originally envisioned by McIlroy, continues

to advance in both industry and government.

Software reuse, as currently practiced, can be improved,

and some of the problems described earlier may be overcome as

the result of research aimed at establishing a foundation for

software reuse.  Two approaches to identifying reusable

components are being explored: domain analysis and software

re-manufacturing.  Domain analysis is a front-end activity

analogous to elicitation, organization, and analysis in the

requirements engineering process. (See, for example, the work of

Prieto-Diaz. [PRIE87a])  Since domain analysis forms an integral

part of the proposals advanced later in this paper, a discussion

of the topic will be deferred until then.  Software
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re-manufacturing, however, falls beyond the scope of the

proposals made in the present paper, and is, therefore,

considered here in the presentation of background material

relating to reuse.

Caldiera and Basili have advanced specific proposals for

re-manufacturing reusable software from existing code. [CALD91]

 This idea appears attractive because some of the most

successful reuse projects reported in the literature started

with existing COBOL code.  The novel aspects of the proposals

from Caldiera and Basili are three:  1) reuse is addressed

independent of a specific domain, 2) software metrics are used

to help identify reusable components, and 3) an automated

system, CARE, extracts reusable components from existing code.

Their current implementation supports analysis of ANSI C and

Ada, and they have built a component extractor for C programs.

A description of the system is given in Figure II-1 below.

Caldiera and Basili intend that their tools support a

reusable software factory operating in a life-cycle independent

from that of specific projects.  In their model, software

projects build applications and reuse components, while the

factory handles requests for reusable parts and builds, or
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Figure II-1.  CARE, a reusable software components extraction system. [CALD91, p.76]
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extracts, and packages reusable components.  Although their

extraction tools operate without specific domain knowledge,

Caldiera and Basili point out that workers in a reusable

software factory must have intimate knowledge of the domain.

Notice in Figure II-1 the tool called a classifier.  This

part of CARE, intended to assist in the problem of

classification of reusable components, is not yet designed.  In

fact, classification of components is another area of research

surrounding reuse.  Prieto-Diaz and Freeman have proposed "...a

faceted classification scheme, based on reusability-related

attributes, and a selection mechanism." [PRIE87]  The goal of

their research was to aid programmers to distinguish between

very similar reusable components.  Their approach integrates a

classification scheme with automated tools to help search for

reuse candidates and to help evaluate the modification effort

required to reuse candidate components.  They criticize the

existing, enumerative schemes (circa 1987) as vague, or as

excluding consideration of reuse attributes, focusing instead on

application and hardware type.  They also demonstrate that

faceted classification schemes are more easily expanded than the

enumerative approaches (e.g., the Dewey Decimal System).  Their

approach appears to be implemented by the DOD software

repository described earlier, except that their ideas about

including a reuser experience profile have not been implemented,

probably because the DOD repository is meant to serve a large,

almost public, audience.  Despite the best efforts of

Prieto-Diaz, Freeman, and others, the classification problem

remains a research issue, and the problem continues to limit the

potential of software reuse.

Another area of research involves techniques for

constructing programs from reusable knowledge or from reusable

components.  Approaches to generation of programs from reusable

knowledge are either:  1) automatic generation from a
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user-written specification [e.g., BARS85] or 2) automated

assistance for a human programmer [e.g., RICH88].  The automatic

generation approach appears to require substantial knowledge of

a fairly narrow domain.  The automated assistant approach

appears to depend on deep knowledge at many levels, as well as

some integration between the levels of knowledge.  In general,

automatic programming systems do not handle well certain aspects

of software requirements that are important and visible to the

user, for example, the details of the user interface or the

myriad, specific exception conditions that can occur.  Another

facet of software development that automated programming systems

must address is the iterative nature of the process.

Development usually moves from vague concepts toward a software

solution in iterative cycles that get closer and closer to an

acceptable solution. [RICH88a]  "Automatic programming systems

will have to explain what they have done and why." [RICH88a,

p.43] Early automatic programming systems have not handled this

interaction and iteration particularly well.  One reason for

failing in the area of user interaction is that automatic

programming systems traditionally depend upon specific languages

that are not easy for users to understand.

An alternative to automatic programming is composition of a

software system from reusable components.  In the past, this

approach was limited by the problems inherent in link libraries:

too many components that are too small, incompatible interfaces

among components, inability to detect errors at compile time,

and limited functionality among available libraries.  Research

into object oriented techniques may overcome some of the

limitations of link libraries. [WIRF90]  A recent study found

that use of an object oriented paradigm improves software

development productivity, and that a significant part of the

improvement was due to reuse. [LEWI91]  The object oriented

model encapsulates groups of functions and attributes into a
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software unit, typically called a class, that is meant to be

reused to implement a concept.  This approach is seen as

superior to the link library approach because a class provides a

logical grouping of functions that can help programmers better

understand the relationships between functions and attributes.

Interestingly, the latest research on object oriented techniques

describes the class as being too fine-grained. [WIRF90]  

Instead, researchers are working to define frameworks, or

ensembles, that group classes into bigger units and then

concentrate on defining the interfaces between the groupings.

The seed for this idea probably grew out of the development of

graphic user interfaces (GUIs) which were implemented as a

related set of object classes.

An example of object oriented frameworks outside the domain

of GUIs is Choices, an operating system framework written in

C++.  Choices includes an interlocking set of frameworks for

file systems, virtual memory, communications, and process

scheduling.  The frameworks can be instantiated as a Berkeley

UNIX, System V UNIX, or MSDOS system.  Experience with Choices

provides some interesting insight into the potential for and

limitations of object oriented approaches to software reuse.

The Choices file system has gone through
many versions, and each version is more
general and reusable than the previous one.
The core classes have been stable for some
time, while the outer classes are newer and
still changing.  This is typical of reusable
designs.  Reusing the early versions points
out design weaknesses that must be
corrected.  A framework’s designer can be
confident of its reusability only after it
has been successfully reused several times.
Designing a framework is itself research.
The designer must understand the possible
design decisions and must organize them in a
set of classes related by the client/server,
whole/part, subclass/superclass
relationships.  Thus, the designer is
developing a theory of the problem domain
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and expressing it with object oriented
design. [WIRF90, p. 118]

The early research on object frameworks has identified the need

for automated tools that can configure applications from a

framework and that can compose applications from a set of

configured frameworks.  Some approaches being investigated

include scripting languages and visual scripting tools.

Adequate support for composition tools will probably require

knowledge-based systems such as those envisioned by Rich and

Waters. [RICH88a]

Rich and Waters advocate a hybrid approach to software

development from reusable components. They envision an automated

assistant that will help the human programmer (user or

professional) synthesize a software solution by inspecting

various chunks of knowledge (called clichés) and by selecting a

set that can be integrated to satisfy a given set of

requirements.  Their approach requires that an automated

assistant possess knowledge of application domain clichés and

programming clichés.  In effect, domain knowledge and

programming knowledge would be used by an expert system to help

a programmer assemble a solution from reusable parts.

What, then, can be concluded about software reuse?  Reuse

success stories possess some common traits:  1) the application

domain is well-understood, 2) components tend to be large, and

3) a definite system model or architecture exists into which

components can be fitted.  Knowledge of both the application

domain and of programming technology is necessary for successful

software reuse.  As a corollary, knowledge, while necessary for

software development through reuse, is not a sufficient

condition;  the knowledge must be represented in a form from

which programs can be generated or composed.  This indicates

that knowledge-based systems (KBS) will play an essential role

in successful software reuse in the future.  KBS can perhaps
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assist with the evaluation and adaptation problems by aiding the

programmer to match requirements to available software

solutions, or components, and by helping adapt existing

solutions and components to specific requirements.  KBS should

also ameliorate the force-fit and novice programmer problems by

interacting in an iterative cycle with the programmer to

identify the best solutions for particular requirements.

Although the classification problem seems unsolvable,  

viewing resuable components in larger chunks promises to change

the nature of the problem. When dealing in larger components,

classification seems more likely to focus on significant

concepts in the problem domain. Current classification schemes

focus too much on solution spaces (e.g., environment

constraints, representation form, data structues, and

algorithms).  Creating fewer, larger, reusable components should

also limit the effects of the location and retrieval problems.

Finally, the requirement for a specific system architecture

or framework to support software reuse suggests that prototyping

systems and standard hardware and software platforms can play a

significant role in developing systems from reusable software.

Prototyping systems might establish an architecture into which

reusable components can be fitted and evaluated.

Over the more than two decades since McIlroy first

introduced the prospect of a reusable software components

industry, significant trends in lower-cost, higher-performance

hardware have increased demand for software.  The software

delivered today embodies richer functionality than was feasible

in 1969.  Even with these changes, the apex of software reuse

seems to have occurred in 1984, when at least two practitioners

reported a 50% reuse rate in two different application domains.

Advances in software languages and technology seemed to wash

away these gains so that by 1987 the reuse rate among typical

software projects had dropped to 33%.  Notably, reuse in the
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1987 to 1989 period appears to have relied on smaller, simpler

functional modules, the concept of reusable program logic and

control structures seems to have vanished.  The newest efforts

beginning in 1990 appear destined to depend on object oriented

programming as the key to reusable software.  Yet, object

oriented approaches are already being called into questions by

some researchers because classes, even though they can

encapsulate many functions and attributes, define reusable

components that are too small.  Although progress on software

reuse appears to be moving in reverse, sometimes backward

movement precedes substantial progress.

This paper argues that the problems plaguing software reuse

are well known, that software reuse during the mid-1980’s

revealed some essential requirements for success, and that

emerging processes for requirements engineering, and associated

tools and techniques, can be applied to boost software

productivity and quality by facilitating increases in reuse of

software.
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  III.  Requirements Engineering for Reuse

As experience was gained with software reuse, researchers

came to understand that intimate knowledge of an application

domain is a necessary prerequisite to identifying, defining, and

specifying reusable software components.  Out of this

understanding is emerging a new discipline dubbed domain

modeling and analysis.  This paper argues that domain modeling

and analysis is nothing more than a requirements engineering

process with a slight difference in emphases.  Further, this

paper proposes that a requirements engineering process, and

related tools and techniques, can support the modeling and

analysis of application domains.  In fact, this paper identifies

requirements engineering steps, tools, and techniques that can

improve the effectiveness of domain modeling and analysis to a

greater degree than any processes, tools, or techniques

developed to date specifically for the analysis of application

domains.  The material presented in this paper suggests that a

domain modeling and analysis process should be merged into the

requirements engineering process, strengthening both processes

and permitting increased benefits from automated tools that can

support both processes.

These arguments are presented in the following fashion.

First, a brief summary of the requirements engineering process

is provided.  Second, a discussion of domain modeling and

analysis is presented.  Third, a mapping between the domain

analysis process and the requirements engineering process is

proposed.  Finally, requirements engineering tools and

techniques that can be applied to analyze and model application

domains are identified.

The requirements engineering process begins with a concept

or idea, however vague, that might benefit from an automated
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solution.  The process ends when a detailed, written

specification of software requirements (called the SRS) is

produced.  The process operating between these two mileposts

comprises an iterative set of steps.  Various proposals exist

for naming and defining these steps, but a great deal of

agreement exists about the activities that must be completed to

move through the process. [DAVI90, FREE80, RAMA86, SAGE90]  This

paper assumes a requirements engineering process model defined

for a George Mason University Ph.D. seminar, "Topics in

Requirements Engineering," led by Dr. James Palmer and held

during the fall semester of 1992.  Figure III-1 illustrates the

process model.

  The first step in the requirements engineering process

involves elicitation of requirements from those who can refine

the concept.  This step is both iterative and interactive.

Usually, one or more analysts skilled in the problem domain are

assigned to meet with users and managers, to review

documentation, to experiment with any existing automated or

manual system.  Elicitation can recur often during the

requirements engineering process;  note in Figure III-1 that

elicitation can be reactivated from several other steps in the

process.  The main aim of elicitation is to accumulate as much

information about the requirements as possible, ensuring that

Concept Elicit Organize Analyze Prototype Document S R S

Requirements Engineering Process

Figure III-1.  Requirements Engineering Process Model

From later development phases
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the information is expressed in terms of the problem domain.  A

secondary aim of elicitation is to build trust and rapport

between the elicitors and the users, so that future iterations

of the elicitation process will be productive.

The second step in the requirements engineering process

encompasses organization of the material gathered during

elicitation.  The raw requirements from the elicitation step

likely contain redundancies, inconsistencies, omissions, and

ambiguities.  The organization step is the first opportunity to

discover some of these problems. (The earlier in the process

that errors are uncovered, the easier and cheaper they are to

fix.)  Organization of the requirements also provides the

beginning of understanding the problem by imposing a structure

on the raw requirements.  The aim of the organization step is

uncover errors in the raw requirements and to begin the process

of model building that continues during the analysis phase.

The third step in the requirements engineering process,

analysis, comprises constructing a model of the problem in a

form that can be exercised, exercising the model, and

discovering requirements errors:  incompleteness, ambiguity,

conflict, redundancy, and imprecision.  These discoveries are

used to return to the elicitation step with a set of specific

issues that can be discussed with the users.  Also during the

analysis phase, problems in organization of the requirements can

be uncovered, initiating a return to the organization step to

refine the model.  When the analysis is supported by automated

tools, the requirements must be transformed from natural

language to a more formal notation.  The process of making this

transformation is itself a form of analysis that can help

discover errors in the requirements;  however, care must be

exercised because analysts have a natural tendency to interpret

the requirements during this transformation.  A more prudent
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course is to iterate through the elicitation cycle, getting the

user’s view, rather than making a hidden interpretation.

The fourth step, most often seen as optional, employs some

form of prototyping to evaluate issues pending from the

analysis.  For example, the requirements might be a bit unusual;

 thus, a proof-of-concept could be prudent.  More typically, the

particular user interface would be implemented and exercised, in

effect prototyping to elicit user views on the interface, or to

evaluate the effectiveness of the interface.  Some requirements

might reflect concerns about performance or some delicate

algorithms: these could be explored through prototypes.  A

growing, but still minority, position views prototyping as

iterative development of the actual application.  This view is

usually held only where the problem domain is fairly routine,

and where performance is not a critical issue.

The final step, documenting, achieves a large

transformation of the information obtained during the preceding

steps.  The requirements are transformed into a Software

Requirements Specification (SRS) intended to guide the design

phase of software development.  The transformation made during

this step moves the requirements from the problem domain into a

solution domain.  Completion of the SRS does not end the

requirements engineering process;  these steps may be revisited

during later stages of the development.

The requirements engineering process is focused and

specific.  The aim is to elicit, organize, and analyze

requirements for a particular software system, and to transform

those requirements into a form, the SRS, that can guide software

development.  How does this compare with processes for domain

analysis?

Domain analysis attempts to generalize all systems in an

application domain, that is, to produce a domain model that

transcends specific applications. [PRIE87a]  Prieto-Diaz
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envisions domain analysis as a process that precedes

requirements engineering for specific systems.  In his view, the

domain model that results from the analysis can help elicit,

organize, and analyze the requirements for a specific system in

an application domain.  This view is shared by Iscoe. [ISCO88]

Iscoe points out that "...lack of a formal model to represent

information at the application domain level results in a severe

information loss during the mapping process..." that creates the

SRS. [ISCO88, p. 300]  Iscoe goes on to demonstrate how domain

knowledge can be used to detect ambiguities and omissions.

Although no accepted definition of the form of a domain

model exists, remarkable similarity can be seen among

researchers regarding the content of a domain model.  Jacobson

and Lindstrom describe a domain model as the set of domain

objects (including their attributes and functions) and the

relationships between them. [JACO91]  This description mirrors

that of other domain analysis advocates. [ARAN89, ISCO88,

PRIE87a]  Iscoe adds to his description of a domain model the

set of rules that can be used to compose, generalize, and

specialize domain objects. [ISCO88]

The disagreement among researchers regarding a

representational form for a domain model seems to be motivated

by differences in the use that each intends for the model.  For

example, Iscoe hopes to generate inputs into any of a number of

transformational program generators;  therefore, he envisions a

model that captures the relevant domain knowledge needed for

domain-specific application programming.  (Not that he knows

what domain knowledge is relevant.)  So, Iscoe’s research aims

to define a model for representing domain knowledge. (He omits

completely consideration of programming in the large, in favor

of small manageable application domains.)

Alternatively, Prieto-Diaz aims to create specific, unique

languages for each domain that is modeled.  The language becomes
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the domain model and is used to describe objects and operations

common to the domain.  As Prieto-Diaz explains: "if a domain

language exists that can acceptably describe the objects and

operations of a required system, then the systems analyst has a

framework on which to hang the new specification." [PRIE87a, p.

23]

Jacobson and Lindstrom prefer a graph representation of the

domain because they aim to build a model that facilitates

reasoning about system modifications. [JACO91]  Arango is

motivated by software reuse, and thus his model of the domain

includes software reusability information. [ARAN89]

Prieto-Diaz places the issue of domain model representation

in perspective:

Selection of a particular representation
structure would depend on the kind of domain
analyzed.  Different forms could be used
within the same domain depending on its
size.  A high level domain model could be in
the form of a faceted scheme or a simple
hierarchy with semantic networks and frames
used for lower level domain elements.
[PRIE87a, p. 28]

This issue of representation of the output of a domain analysis

process is rather revealing.  Since an SRS embodies a natural

language document that is meant to guide further development by

human, software designers, a vary of representations can be used

effectively.  As with domain models, wide agreement exists on

the general content of an SRS.  The main differences in SRS

documents are variations in form.  With respect to domain

models, however, issues of representation appear paramount.

Domain models must be both understandable by humans and

processable by a computer.  In addition, models of a particular

domain usually must be integrated with models from other

domains.  Such integration can be impeded by incompatible

representations.  Because domain models are sensitive to issues
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of representation, the domain modeling activity must precede

creation of a SRS; therefore, domain analysis must either

precede, or be contained within, the requirements engineering

process.  Before considering the relationship between the domain

analysis and requirements engineering processes, a discussion of

the domain analysis process is in order.

A number of researchers have proposed processes for domain

analysis.  McCain proposes a four step process:  1)  define

reusable entities, 2) create reusable abstractions from these

entities, 3) perform a classification of the abstractions, and

4) define an abstract interface, the essential constraints and

limitations, and any customization requirements for the

abstractions. [PRIE87a]  Arango proposes a six step process:  1)

bound the domain, 2) collect standard examples of

implementations from the domain, 3) perform a systems analysis

on each example, 4) identify potential abstractions, 5) map the

abstractions into a formal representation using conceptual

modeling languages, and 6) identify potential abstractions that

can lead to multiple implementations. [ARAN89]  Probably the

most complete domain analysis process model has been proposed by

Prieto-Diaz. [PRIE87a]

Prieto-Diaz divides the domain analysis process into three

phases: pre-analysis, analysis and post-analysis.  The purpose

of the pre-analysis phase is to define and scope the domain, to

identify sources of knowledge and information about the domain,

and to define a strategy for the analysis.  The analysis

consists in finding abstractions for groups or classes of

groups, documenting these abstractions as frames, classifying

and seeking relationships between the frames, and documenting

the relationships as a taxonomy of the domain and as a structure

of relationships that can be used as a domain model.  The

post-analysis phase covers encapsulating the reusable

abstractions and producing guidelines for reusing the
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abstractions.  Prieto-Diaz illustrates his proposed process with

a set of data flow diagrams that help to understand the inputs

to the process, the specific transformations or activities, and

the results.  These diagrams are repeated here as Figures III-2,

III-3, III-4, III-5, III-6.

Figure III-2 provides a context diagram for the domain

analysis process proposed by Prieto-Diaz.  Note that the process

involves a domain expert and a domain analyst on the front-end,

and that a set of reusable components is output, as well as

guidelines for software engineers to use the reusable

components.  In addition to domain knowledge, input comes in the

form of examples from existing systems.  Figure III-3 decomposes
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Figure III-2. Domain Analysis Context Diagram [PRIE87a, p27]
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the context diagram.

Figure III-3 corresponds to the pre-analysis, analysis, and post

analysis phases proposed by Prieto-Diaz.  Each of these phases

is decomposed further in Figures III-4, III-5, and III-6.

  

  When domain analysis is conceived as a preliminary

activity that precedes requirements analysis, some interesting

issues arise.  For example, who conducts the analysis?  Project

teams are usually focused on producing a specific product

related to the goals and objectives of the project.  Forming

special domain analysis teams raises other questions:  Who pays

for the analysis?  What are the specific concrete outputs of the

analysis?  Who evaluates these outputs? How?  These issues are

very similar to issues raised in an earlier discussion about

remanufacturing reusable software components (see pages 21 to

22).

Figure III-3.  Domain Analysis Level 0 [PRIE87a, p. 27]
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Prieto-Diaz appears to conceive domain analysis as a linear

transformation that captures and represents domain knowledge in

a model that enables generation of reusable components and

creation of standards for reusing components.  All information

created during this transformation is then available to assist

in engineering requirements for specific applications within the

domain.

The approach outlined by Prieto-Diaz is unrealistic

regarding several issues.  First, understanding a domain

sufficiently to generate a domain model is likely to be an

iterative process.  Management is unlikely to invest in an

expensive, iterative activity as a front-end to requirements

engineering.  Further, application projects are unlikely to be

help in abeyance, pending completion of a rigorous domain model.

Second, creation of unique languages for each domain will likely

inhibit integration between models from several distinct, yet

related, domains.  Such inhibitions will lessen the return from

investing in the domain analysis.  These limitations can be

overcome, possibly, by incorporating domain analysis and

modeling activities into the requirements engineering process

outlined earlier.
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Figure III-6.  Post-Analysis Phase [PRIE87a, p.27]
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Transforms 1.1 through 1.4 of Prieto-Diaz’s pre-analysis

phase (Figure III-4) map nicely into the elicitation step in the

requirements engineering process.  The inputs, for example, are

identical: domain experts, existing systems, and analysis

guidelines.  The emphasis while analyzing a domain, rather than

one specific application, would be broader and more general.

Still, many of the processes and activities would coincide, and

some of the same tools and techniques could support elicitation

of knowledge about specific applications, as well as, knowledge

about the entire domain in which the applications operate.

Domain knowledge elicited could be used to better understand

specific applications;  and, because a number of applications

are likely to be developed over time, two conditions might hold:

1) not all domain knowledge need be devised at once (refinements

and additions can be made with each new application development)

and 2) any domain knowledge previously acquired can assist in

the elicitation, organization, and analysis of new applications

in the domain.

Transform 1.5 of Prieto-Diaz’s pre-analysis phase can be

mapped to the organization step and the early portions of the

analysis step defined for the requirements engineering process.

Many of the tools and techniques available to help organize and

analyze software requirements should also be applicable to

defining domain requirements.

The analysis phase defined by Prieto-Diaz (Figure III-5)

can be viewed as the later portion of the analysis step in the

requirements engineering process.  During this phase, domain

concepts, functions, and relationships are identified and

classified.  The output of this phase includes a domain model,

supported by a description of domain concepts (as frames) and

relationships (as a taxonomy).  Prieto-Diaz also proposes that

during this phase a domain specific language be created;  

however, the current paper proposes that the domain specific
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language in Prieto-Diaz’s model be replaced with a

representation that supports prototyping, and that steps 2.7

through 3.3 of Prieto-Diaz’s model be replaced with a

prototyping step.  The aim of the prototyping step is to

evaluate the domain concepts, functions, and relationships

defined during organization and analysis.  Is the understanding

sound? Are the concepts reusable?  Can the concepts be

integrated with reusable components from other domains?

Prototyping can help answer these questions, and a prototyping

system can define an architecture into which reusable concepts

and components can be fitted.  Prototyping, in effect, can

bridge the analysis phase to the post-analysis phase of

Prieto-Diaz’s domain analysis model by providing a means to

evaluate domain knowledge, defined and represented during

earlier phases, and to evaluate candidates for reuse.  From

here, the final step (3.4) of Prieto-Diaz’s model can be

followed.  This step maps to the documentation step in the

requirements engineering process; but instead of an SRS, the

output includes:  descriptions of reusable concepts and

components, domain-specific guidelines for reuse, and domain

standards.

Having described a mapping between domain analysis and a

requirements engineering process, the current paper now

considers tools and techniques that can support the integrated

process.  Specifically, techniques and tools for knowledge

acquisition and representation are discussed in the next

section, Domain Knowledge Acquisition and Representation, and

prototyping approaches and systems are explored in Section V,

Prototyping and Reuse.
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  IV.  Domain Knowledge Acquisition and Representation

Among the most common problems found during a comprehensive

study of a typical, large-scale software development project was

a lack of widespread domain knowledge among the project team.

[CURT88]  Lack of domain knowledge was keenly felt in this

large-scale project because,

... [a]lthough individual staff members
understood different components of the
application, deep integration of various
knowledge domains required to integrate the
design of a large, complex system was a
scarcer attribute.  Specification mistakes
often occurred when designers did not have
sufficient application knowledge to
interpret the customers intentions from the
requirements statement.  As one system
engineer put it: ’Writing code isn’t the
problem, understanding the problem is the
problem.’ [CURT88, p. 1271]

This same study also found that superior software system

designers possessed a detailed understanding of the application

domain, and could map between application requirements and the

software structures needed to implement the requirements.  From

this study, three implications were drawn: 1) software tools and

practices must raise the level of application domain knowledge

across the entire development staff, 2) software tools and

methods must accommodate experimentation and change, and 3) any

software development environment must be a medium for

communication.  These implications lead directly toward methods

for acquiring, representing, and sharing domain knowledge, and

toward prototyping approaches.

This section of the paper considers techniques for

knowledge acquisition and representation.  The discussion begins

by identifying sources for domain knowledge and describing some
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of the problems faced by domain analysts (or knowledge

engineers) when dealing with knowledge sources.

Three fundamental knowledge sources exist: automated

systems that operate according to domain rules, technical

documentation, and people who embody domain knowledge (so-called

domain experts).  A domain analyst can certainly sit down at a

console and use an existing system to obtain direct, concrete,

and unambiguous knowledge about an application.  This is,

perhaps, tedious, especially if the system is large.  The domain

analyst will probably still need to refine the knowledge gained

from using the system by consulting with technical documentation

and domain experts, but the method is well understood.  Less

well understood (as discussed earlier on pages 21 to 22) are

methods to automatically extract domain knowledge from the

actual code for the application system.

Review of technical documentation presents another set of

problems.  Reading a text on any subject requires that the

reader possess a large base of knowledge, including general

knowledge, subject-related background knowledge, and knowledge

about how information is represented. [KONT88]  These

requirements place a certain burden on the domain analyst who

must read and understand technical documents relating to an

application domain.  These requirements also impede the

development of automated systems intended to extract knowledge

from texts.  An additional impediment to automated knowledge

extraction is the tendency to rely on graphs, pictures, and

charts in technical documents.  Automated approaches for

extracting knowledge from graphical material are beyond reach at

the present time. [NAGY92]  So, it appears that domain analysts

must rely on domain experts to provide the bulk of

domain-specific knowledge needed to understand particular

applications.
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Unfortunately, eliciting information from domain experts is

difficult for a number of reasons.  One problem, sometimes

easily overlooked, is that many people who appear to be domain

experts are, in fact, actually not. [CHOR90]  Chorafas offers a

set of guidelines to help knowledge engineers discern a real

expert:  1) a real expert does not fear change, but understands

that change is inevitable;  2)  a real expert knows his own

strengths and weaknesses;  3) a real expert appreciates gray

areas; 4) a real expert can handle, and even thrive under,

stress;  5) a real expert sees learning as a life-long endeavor

and never misses an opportunity to extend her own knowledge;  6)

a real expert sees sharing knowledge with others as a duty.

[CHOR90, p. 43.]

After a domain expert is identified, other problems must be

overcome by the analyst who hopes to acquire domain knowledge

through interviewing techniques.  The most basic problem is

miscommunication between the knowledge engineer and the domain

expert. [MUSE89]  These two individuals rarely speak the same

technical language. To reduce misunderstandings, the knowledge

engineer must gain a prior knowledge of the application domain.

Still, communication remains difficult because the analyst may

need precise information, while the domain expert talks in

inconsistent and imprecise terms. 

Other problems relate to the nature of experts.  For

example, experts do not introspect reliably. [MUSE89] Experts

are usually bad at explaining, but good at doing. [CHOR90]  

Experts have difficulty articulating problem solving knowledge

in a form suited for representation in an expert system.

[BOOS86]  For these reasons, the domain analyst must find an

expert who can, and who is willing to, spend a few hours

exploring a domain, and who can be on call while the elicited

knowledge is encoded in an expert system and then tested.

[CHOR90]
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Even more fundamental problems face the domain analyst

because the model provided by expert systems (i.e., a knowledge

base, coupled to an inference engine) does not seem to reflect

the way experts actually think. [MUSE89]  In experts, changes in

the knowledge base seem to alter thought processes.  For

example, as people move from novice to expert, they tend to

chunk knowledge into highly specialized, content-specific and

task-specific methods.  Experts rely on a huge amount of this

specific, content knowledge.  The process knowledge used by an

expert then becomes dependent on the content knowledge possessed

by that expert.  Expert systems are not presently capable of

altering their reasoning methods as they obtain increased

content knowledge over time.  This difference creates an

incompatibility between the basic model used by a

knowledge-based system and the thought processes of experts.

Although these problems represent barriers to a domain

analyst, research into knowledge acquisition techniques suggests

some strategies, techniques, and tools that can help overcome

such barriers.  Knowledge acquisition research considers both

human techniques and automated methods.  These are discussed in

turn.

The technique most often used by domain analysts to elicit

knowledge from domain experts is the interview. [CHOR90]  In

general, when dealing with an expert, an interview is

one-on-one.  The domain analyst must have an understanding of

the concepts and jargon in the domain and must know what

questions to ask.  Both the interviewer and the expert must see

the interview as an iterative process.  The results of

interviews alone are usually unsatisfactory, so interviews are

often coupled with observation of the expert at work.  The

intent of such observation is to verify and clarify information

obtained during interviews, as well as to prepare additional

questions for future interviews.
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Other strategies can augment interviews, and, thus,

strengthen the knowledge acquisition process. [CHOR90]  For

example, the domain analyst can set up a recorded session where

the domain expert, without the domain analyst present, is

introducing two novices to the problem domain.  The presence of

two novices raises the odds that the session will be  

interactive.  The domain analyst can use the recording to

prepare for interviews with the domain expert.

Another technique available to a domain analyst is the

expert workshop. [CHOR90]  In this technique, the analyst

conducts a workshop with the domain expert where case studies

and scenarios are presented to the expert.  The analyst actively

probes with questions to reveal the experts reasoning, and takes

readable notes for later review.  This technique can be

strengthened by sampling several experts in an N-FOLD approach.

While interviewing multiple experts increases the cost of

knowledge acquisition, application of N-FOLD techniques to other

front-end software development activities appears to be cost

effective. [MART90]  A more difficult problem when sampling

experts is that domain knowledge is not always additive;  in

fact, an analyst might be forced to select between divergent

approaches or rules gleaned from different experts.

While interview techniques for knowledge acquisition remain

largely a human endeavor, many researchers aim to improve the

efficiency and effectiveness of interviewing by employing

automation.  Two general approaches are being pursued: 1)

automated assistance for the domain analyst and 2) automated

elicitation, directly from the domain expert.  The automated

assistant approach appears generally applicable to a full range

of problems, from small to large, across many domains.   The

focus in these approaches is to help an analyst by exploiting

the strengths of automation.  The direct elicitation approach

appears more limited by a need for a priori, domain-specific
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knowledge.  To overcome this limitation most research on direct

elicitation provides tools that could be viewed as expert system

generators, that is, for each specific domain, a computer

program elicits information from a domain expert and then

generates an expert system for the domain.  Of course, some

researchers are investigating hybrid approaches to provide

knowledge system workbenchs that provide tools for automated

assistance of analysts, as well as tools for automated

generation of expert systems.   Some specific tools supporting

each of these approaches are described below.

Fickas envisions a tool, KATE, for automating the analysis

process. [FICK87]  Fickas views the requirements analysis

process as an interactive, iterative, problem-solving paradigm

involving a user and analyst.  To support this paradigm, Fickas

plans KATE to consist of a front-end (which includes a domain

model, a knowledge acquisition component, and a critic) and a

specification generator (which can map from an internal

knowledge representation into any number of existing

specification languages).  KATE’s domain model would encompass a

wide range of knowledge: 1) common objects, operations, and

constraints, 2) known solutions to hard design and

implementation problems, 3) an understanding of how the

environment might affect the system, and 4) a model of

typicality for the domain, but modulated by any management

policies.  Such a model is easier described than implemented.

At the time Fickas was reporting his approach, he had

implemented a small-KATE (SKATE).  The main purpose of SKATE was

to show that domain knowledge can be used to detect errors in a

problem description that cannot be detected solely using

syntactic knowledge.  The domain model constructed for SKATE was

hand-coded using Knowledge Engineering Environment (KEE), an

expert system shell that features a frame-oriented

representation language (see the discussion of knowledge
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representation below).  The main result of SKATE was learning

about what would be required to make KATE a success.  The domain

model must be more general, including support for learning new

concepts as they arise.  KATE must embody enough domain

knowledge to avoid requiring the user to input the tedious lists

of objects, actions, and constraints for the domain.  KATE must

also include an example generator, because a strength among

domain experts is the ability to generate significant examples

that reveal domain rules that might otherwise be overlooked.

Another component of Fickas’ paradigm is the critic.  The

job of the critic is to poke holes in a requirements description

by using the domain knowledge base from KATE.  For the exercise

with SKATE, Fickas implemented a critic called JOG.  In

experiments with a library problem domain, JOG was able, while

analyzing a requirements statement, to discover:  missing

resource classes, lack of a borrowing time limit, a missing

concept of books on reserve, missing limits to the number of

books that could be checked out at one time, omission of

security requirements, and missing queries that a borrower might

wish to make.  While this performance was impressive, success

depended largely on an extensive domain knowledge base which was

hand-coded by a human knowledge engineer after interviewing

domain experts.  As Fickas pointed out "... we have yet to

demonstrate an interactive acquisition model, nor a means for

learning new concepts introduced by a client." [FICK87, p. 66]  

In effect, all SKATE and JOG accomplished was to demonstrate the

type of automated assistance that could be provided to a

requirements analyst, given a sufficient domain knowledge base.

Another researcher, Shemer, describes a systems analysis

expert aide (SYS-AIDE) intended to help an analyst interview and

collect assertions about the problem domain and to construct a

conceptual model. [SHEM87]  SYS-AIDE is modeled as an expert

system asking questions in order to build a model.   The
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questions asked by SYS-AIDE should point the analyst to the

information that must be collected to successfully construct a

model of the domain.  In effect, SYS-AIDE elicits assertions

from the analyst (who must then elicit knowledge from a domain

expert) and, given the assertions elicited, maintains a

conceptual model by adding and modifying assertions, and by

reasoning about  relationships.  The specific assertions vary

with the domain, but the reasoning rules are invariant knowledge

encoded within SYS-AIDE.  In effect, the invariant knowledge is

analysis process knowledge, so SYS-AIDE attempts to be an expert

domain analyst.

Another tool to assist the domain analyst is reported by

O’Bannon. [OBAN87]  This tool is similar in concept to SYS-AIDE,

but adds knowledge of elicitation strategies.  A rule

constructor encodes methods to elicit, record, and analyze

responses from a domain analyst.  During knowledge acquisition,

the system offers the domain analyst a prioritized list of

actions to be taken at each interview step and suggests the most

effective verbal responses to elicit the necessary information.

Once the information is entered into the rule constructor by the

domain analyst, the system can analyze the logical implications

of the assertions and produce a preliminary set of production

rules.

Another approach built on the principle of assisting the

analyst is described by Palmer and Fields of George Mason

University (GMU). [PALM92]  The environment developed at GMU

covers the entire requirements engineering process, not simply

knowledge elicitation; however, tools are included for eliciting

requirements from groups of users and for analyzing requirements

for conflict, redundancy, incompleteness, imprecision, and

ambiguity.  The environment provides a nice framework, as well

as a set of useful tools.  Plans for future work include

incorporating more semantic knowledge into the analysis tools.
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Since the environment includes capabilities for prototyping, a

possibility exists to investigate means of tying domain models

to prototypes through specific knowledge representation schemes.

The requirements engineering research at GMU goes further than

most other efforts to establish an environment into which tools

can be fitted.  Such an environment enhances the effectiveness

of individual tools by enabling them to be combined and applied

together in novel ways.

A knowledge acquisition tool that seems to fit within the

philosophy of the GMU requirements engineering environment is

REMAP. [RAME92]  The aim of REMAP is to capture deliberations

that occur during requirements engineering and software design.

Specifically, REMAP captures the design rationale so that the

design is more likely to be understood later, and, therefore,

reused.  REMAP supports the incremental and iterative nature of

the requirements and design processes.  Perhaps REMAP could

provide a bridge between the GMU requirements engineering

environment and the software design process.

Another automated assistant that attempts to bridge between

requirements and design is Fickas’ Critter. [FICK92]  Critter

embodies knowledge of system design strategies and concepts; a

human designer is expected to provide domain knowledge.  Critter

and the designer interact to develop a design to solve a

domain-specific problem.  To date, the results with Critter are

not encouraging.  Critter’s limited reasoning techniques prevent

its use on large software engineering problems; the analysis

algorithms used in Critter are much too slow for an interactive

design system; and Critter’s knowledge base and representation

omit several classes of system design concepts.

Another class of knowledge-based systems attempts to

replace the domain analyst with an expert system generator.

Such generators interact directly with a domain expert to create

an expert system for a specific domain.  One such system, the
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Expertise Transfer System (ETS) reported by Boose, attempts to

cut the time required (typically six to 24 months depending on

the domain) to create an expert system using interview

techniques. [BOOS86]  ETS employs clinical psychotherapeutic

interviewing methods, called Personal Construct Theory,

originally developed by George Kelly. [KELL55]  ETS

automatically interviews an expert, analyzes the information

gathered, and then generates a set of production rules.   ETS

incorporates an inference engine to permit testing of the

generated production rules.

ETS first elicits conclusions that the expert system to be

generated should be reaching (e.g., specific diseases,

management decisions, diagnostic recommendations).  If the

expert does not know, an incremental interview mode is started.

Once the conclusions are captured, ETS presents these, three at

a time, to the expert and inquires about similarities and

differences.  The result of this initial phase is a list of

elements to be classified and a list of classification

parameters.  During a second phase, the expert is asked to rate

each element against each pair of traits using a numerical

scale, augmented with the ratings neither and both.

Once a rating grid is established, ETS invokes several

analysis methods to structure the knowledge.  First, ETS builds

a graph of implied relationships, and then computes matching

scores between traits and goals.  The expert is consulted to

help distinguish between closely related concepts.  Second, ETS

generates production rules of two types: conclusion rules and

intermediate rules.  Each rule is associated with a certainty

factor between -1.0 (False) and +1.0 (True).  Once production

rules are generated, the expert can use the inference engine in

ETS to test the knowledge base, or she can generate a knowledge

base for input to an expert system shell, such as KEE.
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ETS, while a powerful tool, is not without limitations.

For example, ETS is best suited for analysis class problems

where the solutions can be enumerated ahead of time.  ETS cannot

handle constructive-class problems where unique solutions are

built from components.  Also, the grid method cannot elicit deep

causal knowledge, procedural knowledge, or strategic knowledge.

For some domains, the expert finds it difficult to identify

similar sets of conclusions at useful levels of granularity.

Experts can also have difficulty interpreting the meaning of

certainty factors, when viewed in isolation, because these

factors are relative to each other.  Some practical problems are

also annoying:  knowledge grids developed by individual experts

cannot be combined and knowledge grids cannot be updated easily.

Another system, PROTEGE, reported in the literature is

similar in approach to ETS. [MUSE89]  PROTEGE requires that a

knowledge engineer provide general knowledge about an

application area.  With such knowledge, PROTEGE can generate

knowledge editors for the application area.  Domain experts then

use the knowledge editor to produce specific expert systems for

the application area.

PROTEGE and ETS are representative of a class of systems

aimed at generating expert systems, either from experts or from

an existing knowledge base.  Other examples of such systems

include:  META-DENDRIL [BUCH78], AQ11 [MICH80], TEIRESIAS

[DAVI81], and NANOKLAUS [HASS83].  Some researchers have picked

up this trail and are attempting to employ expert systems to

support domain-specific reuse.

Iscoe advocates using expert systems to enable users "...

to directly create and maintain their own programs because it is

unreasonable to expect that there will ever be enough

professional programmers to meet the continually increasing

demands for software." [ISCO88, p. 301]  Iscoe believes that

domain knowledge is the key to successful user programming.  He
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outlines a research program to explore methods to build a domain

model as a knowledge base, and then to use the knowledge to

transform user-provided, application specifications into

run-time programs.  As with most approaches of this type, Iscoe

intends to limit his investigation to programming in a small

domain.

Another interesting approach, still limited to a narrow

domain, attempts to generate knowledge directly and

automatically from technical text. [KONT88]  Kontas and Cavouras

propose to parse text from a technical document to create an

attribute grammar (both syntax and semantics) representation of

the information.  Their research works with a BASIC programming

document as the input text.  They have determined that parsing

the text requires: subject-related knowledge (i.e., BASIC

programming concepts), linguistic knowledge (i.e., lexical,

syntactic, and semantic knowledge of English), and

representational knowledge (i.e., attribute grammar rules).

While this approach appears unique within the literature, the

results are not encouraging.  Parsing is slow; the subject text

is very narrow; attribute grammars can only represent two types

of relationships; the vocabulary processed is small; and the

resulting representation can only answer a single type of

question.

More promising than any of the approaches that replace

domain analysts with expert systems, hybrid approaches

incorporate automated assistants together with expert system

generators and other supporting tools to create a knowledge

acquisition workbench.  A typical example of this hybrid

approach is AQUINAS. [KITT87]  AQUINAS, shown in Figure IV-1,

gives automated assistance to both domain analysts and domain
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experts.  

Tools from the AQUINAS workbench help analyze the problem

domain, classify the problem task (and any subtasks), identify

problem solving methods, suggest appropriate knowledge

acquisition tools, and recommend specific strategies for using

the tools.  In philosophy, AQUINAS is similar to the

requirements engineering environment developed at GMU.  A range

of tools is included inside an integrated environment; analysts

can use the tools in a variety of novel ways; and AQUINAS even

advises analysts on appropriate methods to acquire knowledge.

In the preceding discussion of knowledge acquisition

techniques, methods of representing knowledge within a knowledge

base were sometimes mentioned. A more complete presentation is

in order because knowledge representation is the single most

important factor determining the power of expert systems

applications that can be built. [CHOR90]

Knowledge representation schemes can be divided into four

categories:  logic programming, production rules, frames, and

semantic networks.  These schemes are usually mixed within

practical applications of knowledge-based systems, but

considering each representation in isolation provides an

appreciation of the strengths, weaknesses, and applicability of

each.
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Object Oriented Data Base Management System

Figure IV-1. AQUINAS Knowledge Acquisition Workbench [KITT87, p. 99]
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Logic programming is programming by description. [GENE85]  

Specific assertions are declared explicitly to be true, and then

are combined with a general inference procedure.  The assertions

describe objects and relationships within a problem domain.  The

inference process requires that each statement in the knowledge

base must be capable of evaluating to true or false.  In effect,

execution of the program is modeled as a deductive proof.  Logic

programming permits incremental development of the knowledge

base and enables the program to explain how it solved each

problem, and to tell why it believes its answer to be correct.

The practicality of logic programming in software engineering

depends to some extent on the underlying technology.  In

general, logic programming systems are inefficient and difficult

to use.  Another drawback of logic programming systems is the

requirement for evaluation as true or false.  While such

evaluations are necessary to deductive methods, many expert

systems must draw conclusions from uncertain data, must reason

by analogy, and must generalize from existing knowledge.

A derivative of logic programming, rule-based systems,

represents knowledge as a set of production rules. [HAYE85]  

Production rules are "if-then" constructions that can combine

preconditions using Boolean operators.  When the "if" clause

evaluates to true, the "then" actions can be executed.  The

skill of a rule-based system increases proportionally to the

size of the rule set.  Expert systems have solved a wide range

of complex problems by selecting and evaluating production

rules.  Such systems can select adaptively the best sequence of

rules to use, and can explain the conclusions reached.

As successful as rule-based systems have proved in

practice, a number of problems limit their potential.  At

present, there is no analytical foundation for rule-based

systems that allows separating solvable problems, from

unsolvable ones.  Also, suitable techniques are needed to test a
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rule set for consistency and completeness.  In practice, rule

sets lead to slow executions and are difficult to scale up to

sizes required for large problems.  Finally, methods are needed

to seamlessly integrate rule-based systems into normal data

processing applications.

A different school of knowledge representation deemphasizes

logic programming and production rules in favor of descriptive

templates, called frames. [FIKE85]  Frames provide a rich

structural language for describing domain objects and some basic

relationships between those objects.  For a given object,

attributes and taxonomies can be represented.  Within some frame

representations, action procedures can be attached to specific

attributes.  The concept of frames matches nicely the theory of

object oriented programming.

Reasoning services available in a pure frames

representation are limited to the taxonomies between the frames,

usually this means inheritance relationships, attribute value

groupings, and cardinal relationships.  Sometimes, frames are

conceived as the database of a knowledge base; in such

conceptions, frames are normally augmented with production

rules, or some other method of describing relationships, to form

a hybrid representation (see, for example, KEE).

In an effort to enhance the value of frames, some

researchers propose using semantic networks. [EEPE92]  Semantic

networks provide natural ways of representing inheritance and

aggregation.  Searching through the frame structure based on

inheritance and aggregation relationships or for exact matches

among sets of attribute values is very efficient, but these are

the only types of searches that semantic networks allow.

Even in the case of inheritance relationships, semantic

networks leave two situations unaddressed.  One is exceptions to

a classification hierarchy.  For example, if elephant is a class

with the attribute color = gray and royal_elephant is a subclass
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of elephant with the attribute color redefined to equal

not_gray, then, if Joe is a royal_elephant, is Joe gray?  This

is an ambiguous question in a semantic network. Normally,

exceptions are resolved by using the traits of the nearest

relative, so the ambiguous question would be answered: no.  The

second situation not addressed by semantic networks is multiple

inheritance.  For example, consider two classes: Buddhists and

athletes.  Buddhists are vegetarians and athletes are

non-vegetarians.  If Tom is a Buddhist and an athlete, then is

Tom a vegetarian?  Proposals exist to solve multiple inheritance

problems in semantic networks through evidential reasoning

techniques.  For example, relative frequencies can be encoded

into attributes in each frame, and then reasoning can be based

on probabilities.  The combination of frames and semantic

networks appears promising as a knowledge representation method,

but more research is needed.

Even as available today, frames, coupled with semantic

networks, have some advantages over logic-based approaches.  For

example, frames allow knowledge to be represented in a form that

experts typically use; semantic networks allow concise

structures to represent certain relationships (i.e., inheritance

and aggregation); frame-based, semantic networks support

specialization from more general concepts; and semantic networks

of frames enable construction of special-purpose,

high-performance, deductive algorithms.  However, without

augmentation by production rules, the ability to reason about

frames is strictly limited to the relationships and values

encoded in the frame structure.

Practical knowledge-based systems intended to support

development of large, software systems will require multiple

kinds of knowledge, represented in the most appropriate form for

the intended application.  Rich and Feldman describe such a

system, called CAKE. [RICH92]  CAKE is a prototype knowledge
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representation and reasoning system used to generate two

automated assistants for programmers: the Requirements

Apprentice and the Debugging Assistant.  CAKE enables

representation of structural artifacts (e.g., specifications,

programs, requirements) at various levels of abstraction.  CAKE

evaluates the reasonableness of decisions reached by a program,

fills in missing details, consults with the programmer before

committing to complex decisions, and explains to the programmer

the actions taken and decisions made.  Providing these

capabilities requires seven levels of knowledge within CAKE (see

Figure IV-2).  

Notice that the knowledge representations encompassed by CAKE

include logic programming, production rules, frames with

semantic networks, and more.

While the effort behind CAKE is impressive, the tool is not

very usable, except by the most knowledgeable programmers.

Also, the knowledge structure cannot be updated easily in some

cases.  As first developed, every fact in CAKE was retractable

so that incremental development could be supported.

Unfortunately, the resulting system was too slow.  Now, two

parallel mechanisms are implemented: one efficient, but

non-retractable, the other, more expensive, but retractable.

Before concluding this discussion about knowledge

acquisition and representation, consideration of problem solving

Figure IV-2. Seven Layers of Knowledge and Reasoning Within CAKE [RICH92, p. 452]
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strategies is in order.  The problem solving strategy used by a

specific expert system defines the types of problems that the

system can solve.  This is an important consideration because

software reuse falls into a particular category of problems that

most expert systems are not equipped to solve.    

Figure IV-3 presents a taxonomy of problems that expert

systems might help solve. Analysis problems require selection of

the best solution from among a set of known solutions. [CLAN86]

 Synthesis problems require composition or configuration or

modification of components to construct a previously unknown

solution. The majority of expert systems employ  heuristic

classification strategies that apply to analysis problems.  A

small minority of expert systems use heuristic composition

methods that apply to synthesis problems.  Unfortunately,

reusing software from a component library, given some

instructions from a user and some knowledge within an expert

system, presents a rich set of construction-type problems.  How,

then, can domain knowledge represented within expert systems be

applied to requirements engineering and software reuse?

Domain knowledge, encoded in expert systems, can be used to

analyze requirements statements for amguity, incompleteness, and

conflict.  Such reuse of domain knowledge during requirements

engineering has been demonstrated in  research results such as

SKATE.  Automated elicitation and subsequent representation of

Figure IV-3. Problem Categories for Expert Systems [KITT87, p. 97]
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domain knowledge in a form that can be applied to requirements

analysis appears feasible because expert systems have a history

of success when applied to analysis and classification problems.

Elicitation and representation of domain knowledge in a

form that facilitates construction or synthesis of software

systems from reusable components is an open question.  To

accomplish such results, knowledge of many domains must be

represented in a form that can be interpreted and acted on by a

software constructor or program generator.  In effect,

successful creation of an application program from reusable

software must use knowledge to build a bridge between

requirements and code.  The semantic gap between these levels

appears large.  A prototyping step within the requirements

engineering process presents an early, inexpensive opportunity

to demonstrate the feasibility of automatic program construction

or generation.  The next section of this paper considers

connections between domain knowledge, prototyping, and software

reuse.  
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  V.  Prototyping and Reuse

The idea of prototyping for software systems originated

from an observation:  when a programmers build software to solve

a problem with which they are unfamiliar, the first

implementation is almost always inadequate, but the second is

adequate.  Sometimes, the original development is not delivered

to the customer, but contributes to an extended schedule and to

cost overruns.  Some practitioners and researchers conceived of

a development process that takes advantage of these early

development efforts by sharing the results with users in order

to obtain feedback regarding requirements and preferences.

Since these initial developments, prototyping concepts have

matured greatly. In fact, there are now various theories and

classification schemes for prototyping approaches.  For example,

Sage and Palmer divide prototyping techniques into three

categories according to goal, or aim:  1) purposeful, 2)

functional, and 3) structural. [SAGE90]  According to Sage and

Palmer, purposeful prototyping focuses on verifying user

requirements and ensuring that software requirements are

consistent; functional prototyping intends to verify that a

system will accomplish what the user wants; and structural

prototyping tests the feasibility of a design approach.  Sage

and Palmer also identify six other classification schemes

proposed by researchers and provide a mapping between these

schemes and their own proposals.

Sage and Palmer share some other insights that should be

kept in mind when evaluating prototyping techniques.  For

example, although many users argue that iterative prototyping is

too expensive, Sage and Palmer point out that finding errors

during the requirements phase means corrections will be much,

much cheaper than if the same errors were not discovered until
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later in the development process.  Sage and Palmer also indicate

that not all application domains are amenable to prototyping.

They state that real-time systems are not good candidates for

prototyping, that large systems can only be prototyped in a

limited fashion (perhaps to identify user requirements), that

small systems can be prototyped to experiment with the user

interface, and that conventional, information systems might be

appropriate candidates for full prototyping.

In the current paper, prototyping approaches are classified

in two ways: by technical approach and by life-cycle model.

Different ideas are discussed for each of these categories, and

specific examples are described.  Two ambitious prototyping

research projects, the Programmer’s Apprentice [RICH88] and Easy

Programming [MARQ92] are singled out for more detailed

consideration.  The section closes with a discussion of

relationships between prototyping and reuse.

Three technical approaches to software prototyping can be

discerned from the literature: transformation, composition, and

simulation.  The vision of advocates of the transformation

approach, often called automatic programming, was described in

the literature in 1983 by Balzer. [BALZ83]   Balzer’s vision of

automatic programming was refined in a 1985 article by Barstow.

An automatic programming system allows a
computationally naive user to describe
problems using natural terms and concepts of
a domain with informality, imprecision and
omission of details.  An automatic
programming system produces programs that
run on real data to effect useful
computations and that are reliable and
efficient enough for routine use. [BAR85, p.
1321]

This definition of automatic programming provides a tall order:

Barstow saw automatic programming not as a prototyping

technique, but as an approach to operational software
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development.  Barstow recorded the difficulty of achieving his

vision of an automatic programming system (APS): an APS requires

a great deal of domain knowledge (definitions, problem-solving

heuristics, and expectations about run-time characteristics of

the data).  Without such knowledge, a computationally naive user

will have difficulty expressing herself to the APS.  Barstow

foresaw a user writing an informal specification that would be

transformed by the APS through a series of steps to become one

or more programs.

Probably the most well known transformation system reported

in the literature is DRACO. [NEIG89]  (Although Neighbors

described DRACO as a hybrid between transformation and

composition, DRACO performs a serious of transformations between

multiple levels of abstractions.)  DRACO consists of: 1) a

library of domain-specific notations, each narrow in scope, but

not hierarchically organized, 2) a parser, 3) a pretty-printer,

4) generators, and 5) analyzers.  The basic approach to

programming in DRACO is to use domain analysis to develop a

Domain Language and then to parse the language and input the

parse-trees to a code generator.  The semantics of a component

in one domain are defined by translation into components of

other domains; thus, the transformations comprise a hierarchy of

domain models.  Neighbors describes the execution model as well

understood, and he believes that mapping between domain models

and the execution model is straightforward.  He identifies the

main problem with the DRACO approach to be construction of

models for application domains.  In other words, who will

construct the knowledge base needed to describe the application?

A second technical approach to prototyping relies more

directly on composition from reusable components.  An example of

composition, called MELD, is described by Kaiser and Garlan.

[KAIS89, GARL92]  MELD defines a module interconnection language

that can be used by an implementor to compose an environment
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from a collection of features, each of which implement some

basic functionality.  MELD assumes that a set of reusable

features have been encapsulated into a library.  Composition as

described with MELD can only be achieved by professional

programmers, but the potential to quickly construct prototypes

is intriguing.  The initial problem, of course, is construction

of a library of reusable features.

A third technical approach to prototyping provides a

simulation of system behavior.  Lee and Sluizer describe a

language, called SXL, that allows system behavior to be modeled

as a finite state machine, with pre- and post-conditions and

invariants included for each transition. [LEE91]  SXL

descriptions, based on entity-relationship structures and

quantified, first-order logic, can by executed interactively to

test the behavior of a system.  An earlier simulation approach

to prototyping was described by Zave. [ZAVE84]  Operational

simulations can only be used to evaluate system behavior.

Issues such as the user interface, data requirements, and

communications interoperability cannot be evaluated through

operational simulation.  Also, prototyping via simulation is

best performed by a trained analyst or programmer.

A third way to view prototyping approaches is by life-cycle

model: throwaway, evolutionary, or operational.  Each of these

is considered in turn.

Throwaway prototypes are intended to verify some specific,

but limited aspect of system requirements, such as complex

behavioral requirements, user interface requirements, or

requirements for an innovative algorithm.  One advocate of

throwaway prototyping is Andriole. [ANDR92]  Andriole proposes a

storyboard approach to prototype user interface requirements.

Storyboard designers must design every
single display of the system in sequence,
with explanations and descriptions of each
display.  All methods and algorithms should
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be explained and users should be able to get
a solid feel for how the system will work
just by thumbing through the pages. [ANDR92,
p. 11]

The availability of high-quality, inexpensive graphic displays

and graphic design software make Andriole’s approach

particularly attractive because users can get a computer

look-and-feel for the system interface without software

development.  Also, modifying the display screens becomes a

quick, simple job.

Another approach to quick, throwaway prototyping is under

investigation at Oregon State University. [LEWI89]  Lewis and

his colleagues are developing a prototyping system that maps

between a user interface and a set of actions.  In essence, the

system proposed by Lewis, augments graphical storyboards with a

set of actions that can switch between displays, pull down

menus, and perform some limited processing from scripts input by

a user.  A user or programmer can interactively design displays

and menus, can assign behavior to specific user actions, and can

create scripts defining operational functions.  The tools under

construction to support this project appear promising as a quick

prototyping method.

Evolutionary prototyping, as opposed to throwaway

approaches, constructs an application system incrementally,

refining each increment through interactions with the users,

until an operationally complete system is constructed.  The

prototyping efforts are meant as a lasting investment.  In 1983,

Balzer described an approach to automatic programming that, in

effect, envisioned evolutionary programming.

A concrete evolutionary software development system, the

computer aided prototyping system (CAPS), is described by Luqi.

[LUQI89]  CAPS comprises three subsystems: a user interface, a

software components database, and execution support.  The user

interface subsystem provides two editors (one syntax-directed
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and the other graphical) for defining specifications and user

interface screens, an expert system to help users create

specifications, and an assortment of debugging and browsing

tools.  The software components database subsystem provides

tools to manage a repository of design descriptions and

translation rules.  The execution support subsystem consists of

a translator and two schedulers (one static, one dynamic).  The

user specifies an application using a Prototype System

Description Language (PSDL).  The translator converts the

specification into an executable system, drawing on previously

defined components stored in the repository.  The user may then

exercise the prototype under control of a run-time scheduler.

CAPS is evolutionary because specifications written, translated,

and tested can be retained in a database for use by prototypes

developed later.

Recently, Davis proposed combining throwaway and

evolutionary prototyping to form a third approach that he names

operational prototyping. [DAVI92]  Operational prototyping calls

for layering rapid prototypes on a solid, evolutionary base.  In

Davis’ view, evolutionary prototypes are built with quality by

following a conventional software development approach.  In

fact, only confirmed requirements are implemented in an

evolutionary prototype.  Quick prototypes are implemented to

explore poorly understood requirements, then discarded.  Davis

imagines building rapid prototypes within an architecture that

embodies an evolutionary prototype.   Davis believes that the

key to achieving an operational model is to build evolutionary

prototypes within an architecture that accommodates extensive

change.  Although Davis does not describe such an architecture,

others have.

Holt and Stanhope define an architecture to support

operational prototyping. [HOLT91]  The architecture proposed by

Holt and Stanhope builds on a set of reusable objects, standard
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interfaces to those objects, standard interfaces for

communicating between computers, and a set of tools for

specifying, composing, and executing applications.  The reusable

megaobjects proposed by Holt and Stanhope differ from the small

objects usually associated with object-oriented programming.

’Megaobjects’ are large pieces of software
that contain carefully defined and
encapsulated interfaces.  During the 1990’s,
applications that are well understood will
be captured as megaobjects.  These will
communicate by software buses, standardized
mechanisms for communication.  The
principles and protocols for software buses
are currently being formulated, and
configuration systems for interconnecting
megaobjects via a software bus without
coding will become common. [HOLT91]

Examples of megaobjects already exist: X-Windows libraries, the

Motif graphical user interface, TCP/IP software, SQL interface

libraries for relational database systems, and various standards

for interchanging formatted data (e.g., SGML, ODA/ODIF, IGES,

and PDES).  The concept of a software bus enabling megaobject

interconnection without programming is, however, a bit

mysterious.  (Certainly, applications can be linked to known

megaobjects via link libraries and data can be exchanged between

loosely-coupled megaobjects using standards for data

communication and formatting, but a grander vision of a high

level composition language for megaobjects is not yet feasible.)

The architecture proposed by Holt and Stanhope meets the

criteria set by Davis for operational prototyping: a solid

evolutionary base, amenable to extensive change.  In fact, Holt

and Stanhope see their architecture as an operational model for

computing based on incremental development by different classes

of developers.  They envision three types of software developers

in the year 2000: end users (estimated to number 110 million) ,

application programmers (expected to number 1 million), and
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toolsmiths and software engineers (expected to number 100,000).

The software engineers will build the megaobjects and work on

standards.  The toolsmiths will incorporate megaobjects into

higher level tools, such as parameter-driven form generators.

End users can employ the generator tools to construct

applications.  To support their vision, Holt and Stanhope cite

today’s user-driven software systems.

Most popular software tools ... available
today are configurable objects that are
parameter-driven.  These include
spreadsheets, databases, wordprocessors, and
multi-media systems.  All of these provide
the capability to enter data and
instructions on what to do with the data.
The data and instructions are then read by
the execution engine, and executed to
produce the results desired by the user.  If
they don’t match the user’s needs, then the
user can change the specifications using an
intelligent, interactive graphical user
interface. [HOLT, p.53]

Holt and Stanhope go so far as to set goals for the next two

decades: by 2000, 50% of applications will be built with tools

and by 2010, 75% of applications will be so built.

To better gauge the practical possibilities of prototyping

as a development method (i.e., the evolutionary and operational

approaches), a review of progress made toward knowledge-assisted

programming is in order.  In 1988, Rich and Waters reported on

an ambitious project to provide computer assistance to

programmers. [RICH88]  This Programmer’s Apprentice is intended

to support all phases of software development from requirements

analysis through software testing.  The apprentice and

programmer are to communicate through a body of shared knowledge

about programming techniques.

Rich and Waters recognized that engineers think in chunked

concepts, that they labeled clichés, and that these concepts

usually related to one another.  They decided that, given a
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library of standard clichés and assistance from an expert

system, programs could be constructed by inspection, rather than

by reasoning from first principles.  Defining and representing

the necessary clichés became a major focus of the Programmer's

Apprentice project. In effect, Rich and Waters were building a

model for the domain of computer programming.

The programmer describes a specification to the apprentice

through a formal notation, called a Plan Calculus.  Using the

programmer-provided plan and a previously encoded knowledge

base, the Programmer's Apprentice can reason about the program

and can map the plan to an implementation.  Rich and Waters

reported that the initial phase of the project concentrated on

generating an implementation from a programmer-created design.

Since that time, other apprentice tools (for example, a

Requirement's Apprentice and a debugging assistant) have been

produced to assist with other phases of the software development

process.

The Programmer's Apprentice project provided effective

tools that were difficult to use and performed poorly.

Certainly, the Programmer's Apprentice could assist a patient,

professional programmer, but providing help to a computer-naive

user was beyond its capabilities.  Four years later, in 1992,

Marques and his colleagues at the Digital Equipment Corporation

(DEC) described a knowledge-assisted system that is intended for

easy programming by users.

In outline, the DEC system maps the features of a specific

application to appropriate abstract methods (i.e., control

structures stored in a knowledge base), elicits expertise

(including variations and exceptions), translates the expertise

into a form that the selected abstract control structure can

use, and then modifies and extends the application to cover

changes in the application requirements.  To accomplish these

tasks, the DEC system comprises three tools: Spark, Burn, and
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Firefighter.  For a better understanding of the system, each of

these tools in discussed in turn.

Spark, with help from a user, sifts through a hierarchy of

pre-defined control structures to select an appropriate approach

for the specific application at hand, and then, by consulting

with the user, customizes the selected approach.  Each component

in the hierarchy is characterized by a set of assumptions about

the type of inputs needed and the kind of outputs produced.

Where multiple control structures appear to be appropriate,

Spark queries the user to reach some conclusion on which

structure would be best.  If Spark cannot easily explain the

source of ambiguity to the user, then Spark simply makes some

default assumptions and leaves the problem for Firefighter.

After completing its work, Spark calls Burn to further customize

the selected solution.

Burn relies on a library of knowledge acquisition tools,

one is associated with each pre-defined, control structure.

Each knowledge acquisition tool knows what knowledge is required

for its associated control mechanism, knows how to elicit the

needed knowledge, and knows how to represent that knowledge in a

form needed by the control mechanism.  For example, Burn might

ask the user for some solutions to an example problem and for a

means of distinguishing between the solutions. After Burn

acquires the necessary knowledge and configures pull-down menus

for the application, Firefighter is dispatched.

No program generated by Burn will work well until it has

been used for a while, and is then modified to account for

forgotten or unanticipated factors.  Burn programs are executed

under the control of Firefighter.  Firefighter is an evaluator

that monitors the performance of Burn programs, detects poor

results, and then queries the user to diagnose and debug the

application.  If a detected error results from missing or

incorrect knowledge, then the knowledge acquisition tool is
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invoked.  If the control mechanism is inappropriate, then Spark

is invoked to select a new mechanism.

Firefighter employs three rather sophisticated,

complementary evaluation techniques to monitor the performance

of Burn programs.  The first two evaluation techniques rely on

specific code that is included in the control mechanisms, while

the third technique is built into Firefighter.  The first

evaluation technique might be called: GOOD DOG, BAD DOG.  Each

time the application executes, the user is queried about whether

the performance was adequate.  If a BAD DOG response is

received, then the knowledge acquisition tool is invoked.  The

second evaluation technique might be called: I’VE BEEN A BAD

DOG.  The application monitors its own performance to detect

inconsistencies and inadequate results.  When such problems are

detected, the user is informed and the knowledge acquisition

tool is invoked.  This strategy is necessary because most users

will not sit still during the initial development while Burn

elicits knowledge about every type of case that the program

might face.  Instead, Burn asks for a minimum of information to

start, the application then monitors its own performance, and

the user is required to provide additional knowledge as needed

to resolve problems and improve the performance of the

application.  The third evaluation strategy might be called: I

THINK YOU MIGHT NEED A HORSE.  Since Spark initially selects a

control mechanism by making strong assumptions on weak evidence,

Firefighter must compare the application output to the

assumptions in order to detect incorrect control mechanisms.

When an error is suspected, Spark is invoked to suggest an

alternate control mechanism.

The goal of the DEC system is to supply reusable mechanisms

in a usable fashion.  Marques and his colleagues plan an

elaborate set of steps to evaluate progress toward their goal.

To assess usability they built nine applications themselves, and
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then presented them to users.  (At the time of the report, these

applications were being evaluated by the users.)  If the

applications appear useful, they plan to write detailed

instructions for specific application tasks and then to ask

users with various levels of programming skill to build some

programs to solve the tasks.  Then, they will ask domain

experts, who perform a task well, but manually, to create a

full-scale program using the tools.  (At the time of the report,

one program had been built by a user; the job took eighteen

days.)  As a final test, they will ask an experienced programmer

to develop a full-scale, hand-coded program to solve a selected

application.  They will then compare the development time and

utility of the hand-coded program with that of a user-developed

program.

To demonstrate reusability, Marques and his colleagues need

to show that new control mechanisms are not needed for each new

application. (This is critical because they admit that the cost

of building mechanisms and their associated knowledge

acquisition tools is too large if they need a special tool for

each new application.)  Each of the nine programs that they

developed used between two and six mechanisms; thirteen

mechanisms were used altogether.  Seven applications used the

dialog manager, six used the select mechanism, and five used the

classify mechanism.

Marques and his colleagues report that "[o]ne of [their]

biggest problems is getting people to ’make contact’ with

Spark’s activity model.  People buried in the details of ’real

work’ have difficulty understanding generic, abstract models of

their tasks unless they helped to create the models." [MARQ92,

p. 29]  In fact, the example given in their report, an example

of sifting through the hierarchy of problem/solution models,

shows a bewildering array of possibilities.  More discouraging

is that, upon selecting an incorrect mechanism, the user can be
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led through a tedious, repetitious cycle of programming by

example only to be sent back to the beginning to select a more

appropriate mechanism.  The basic approach appears to be

programming by educated guess, followed by trial and error

refinement.

Marques and his colleagues have developed the most

sophisticated, computer-assisted software development tools

reported in the literature to date.  The tools compose and

refine an application from a set of reusable components.  The

composition method employs knowledge encoded within the tools,

coupled with knowledge elicited from a domain expert.  The

reusable components and the elicitation, generation, and

run-time tools define an architecture into which elicited

knowledge can be encoded.  Instead of relying on standards to

define an open architecture, the developers have constructed a

closed environment.

The system produced by Marques and his colleagues meet the

criteria for an automatic programming system, as defined by

Barstow in 1985, with one exception.  The reliability of

programs produced by the DEC system cannot be assessed because a

given application program is never really completed.  The

program continues to be refined, growing smarter, and

presummably more reliable, with use.

The discussion of prototyping approaches presented in this

section illustrates that all prototyping involves reuse,

sometimes of components, sometimes of knowledge encoded in a

knowledge base, a transformation program, or a simulator, but

most often of a combination of components and knowledge.

Successful operational and evolutionary prototyping approaches

rely mainly on composition of large, reusable components,

coupled with knowledge elicited from human programmers or users.

The form of reusable components varies from open systems

composed of standard software functions that are accessible via
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standard interfaces to closed systems of components that are

integrated into an expert system, that are accessible via

heuristic classification strategies, and that can be modified

through an interactive dialog between a user and an expert

system.  In the case of open prototyping systems, methods for

eliciting and representing composition rules are not well

understood nor widely available.  In the case of knowledge-based

prototyping systems, methods for eliciting and representing

knowledge, for selecting a possible solution, and for modifying

the selected solution to meet specific application details are

all integrated into the prototyping system.  Of course, the cost

of building such closed prototype systems is quite high -- all

the reusable solutions, elicitation software, and analysis and

classification algorithms must be constructed before prototypes

can be built.  Even when not intended to evolve into operational

software systems, prototyping systems can provide an

architecture, or context, into which reusable components and

knowledge can be fitted and evaluated.
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 VI.  Conclusions

Reuse in the software industry, as with any engineering

discipline, holds the key to increased productivity among

practitioners and to improved quality among software products.

Although the concept of software reuse was identified as early

as 1969, the progress achieved within the software industry,

while significant from some points of view, disappoints most

reuse advocates.  Some may argue that revised economic

incentives and solid management commitment will enhance software

reuse practice, but this paper has described a long list of

hard, technical barriers that impede software reuse.  In fact,

the paper has reported a historical perspective that shows

software reuse rates peaking at about 50% in 1984, and then

dwindling to about 33% by 1989.  Worse, the components being

reused in 1989 were both smaller and simpler than those reused

in 1984.  What can account for this trend?

Much of the early progress in reuse relied upon a well

understood application domain (business information systems) and

a specific, well defined programming architecture (COBOL

programs on mainframe computers).  Advances in technology, such

as new programming languages (Ada and C), new programming

paradigms (object oriented programming and graphical user

interfaces), and fast, cheap, desktop computers, have washed

away progress made in reuse among COBOL business applications.

Reuse principles could not be generalized and applied easily in

new environments.  To move software reuse back to and beyond the

50% peak realized in 1984, new approaches, drawing on the

successful early experiences, are needed.

The present paper has identified three keys to successful

software reuse:  1) a well understood application domain, 2)

large-grained reusable components, and 3) a definite system
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model or architecture into which reusable components can be

fitted.  The system architecture should be general enough so

that reusable components are not necessarily limited to those

written in a specific, programming language.

The first requirement for successful software reuse, a well

understood domain, can be approached through a domain analysis

and modeling process that incorporates knowledge-based tools and

techniques.  This paper proposed integrating domain analysis

into the requirements engineering process.  Further, the paper

showed how such integration could be achieved by proposing a

specific mapping between a domain analysis process described by

Prieto-Diaz and a requirements engineering process defined in a

seminar on requirements engineering held at George Mason

University in the fall of 1992.  The paper went on to identify

several tools and techniques that could be used to aid the

integrated domain analysis and requirements engineering

processes.  These tools and techniques mainly supported the

elicitation, acquisition, and representation of knowledge.

The second requirement for productive software reuse,

large-grained reusable components, is the subject of current

research.  Several object oriented paradigms are moving toward

the concept of frameworks or ensembles to represent a collection

of related classes that support a large, reusable concept.  In

fact, collections of classes are used to implement some of the

key reusable components in the industry today; these are the so

called "megaobjects" such as X-Windows, the Motif graphical user

interface, TCP/IP communications software, and SQL interface

libraries.  The trend toward larger, reusable components is also

evident in automated programming systems, such as the user

programming system developed by researchers at the Digital

Equipment Corporation.  In DEC’s approach, reusable control

mechanisms are constructed and then inserted into a library

where searches, conducted by a user, for a control structure to
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support specific application requirements are assisted by an

expert system.  Once a control structure is selected, a related

elicitation program acquires the necessary knowledge to solve

the specific application problem and then represents that

knowledge in a form that can be used by the pre-defined control

structure.  During use, the application program can be refined

with additional knowledge, even to the point of selecting an

alternate control structure.

These two approaches, one called an open architecture and

the other a closed expert system, both address reuse at a large

grain size. Each approach has advantages and disadvantages, as

outlined in the paper, that go to the heart of the relationship

between prototyping and knowledge acquisition and

representation.  The open architecture can more easily accept

components developed by different approaches and using different

languages; however, the transformation between domain knowledge

is made by a human programmer.  The closed expert system can use

pre-defined knowledge, guided by an interaction with a domain

expert, to produce a solution to a specific application problem;

however, the pre-defined knowledge must already be encoded into

the system, and encoded in a form that meets the requirements of

the expert system.  This pre-encoding of knowledge is expensive,

and the number of sources that can encode the knowledge is

probably rather small.

This dilemma, open versus closed architecture, describes

the problem faced by the industry when the third prerequisite

for successful software reuse, a well defined system

architecture, is considered.  There can be no doubt that a

definite architecture is necessary for reuse:  consider the

success of UNIX, MSDOS, and, maybe, MS Windows.  These are each

a specific architecture that enables reusable software; but such

software cannot be easily moved from one of these architectures

to the others.  Will the industry have winners and losers?  Will
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one architecture predominant and others fade?  Such is our

history.

This paper has advocated that some form of prototyping be

used to evaluate reusable components, and also that prototyping

can be a source of previously evaluated reusable components;

however, the paper does not come down on the side of a specific

architecture, or even on the side of a closed or open

architecture.  Should an open architecture be used, the problem

of choosing particular standards must be addressed.  (This is a

problem worthy of separate consideration in another study.)

Open architectures also provide little help with some reuse

problems such as classification, location, and retrieval.

Closed, expert system architectures can help solve such

problems.  Of course, closed architectures may suffer from the

reuse population problem.

More research is required concerning the problem of

bridging the conceptual gap between domain knowledge

representations and prototype representations.  In fact, the

forms of representing knowledge (logic programming, production

rules, frames, and semantic networks) are rather limited no

matter to what use the knowledge will be put.  For example,

although expert systems can elicit knowledge from domain experts

and then encode that knowledge into a knowledge base suitable to

support reasoning, no means presently exists to translate

textual requirements statements, gathered from users by

analysts, into a form suitable for storing in a knowledge base

or for comparing against a knowledge base.  Until further

progress is made on these issues, knowledge-based systems can at

best provide a limited form of automated assistance to human

analysts.
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